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Agenda

• Assignments

– hw2 will be returned soon

– hw3 being returned

– hw4 due tonight

– hw5 released

• Building a test suite

• HW5 warm-up



Unit Test Best Practices
How to craft well-written JUnit tests



#1: Use descriptive asserts, test 
names

• When a test fails, JUnit tells you:

– Name of test method

– Message passed into failed assertion

– Expected and actual values of failed assertion

– Stack trace

• The more descriptive this information is, the easier it is to 
diagnose failures

• Avoid System.out.println()

– Want any diagnostic info to be captured by JUnit and associated 
with that test method



#1: Use descriptive asserts, test 
names

• Test name: describe what’s being tested

– Good: “testAddDaysWithinMonth,” …

– Not so good: “testAddDays1,” “testAddDays2,” …

– Useless: “test1,” “test2,” …

– Overkill: 
“testAddDaysOneDayAndThenFiveDaysThenNegati
veFourDaysStartingOnJanuaryTwentySeventhAndM
akeSureItRollsBackToJanuaryAfterRollingToFebruary(
)”
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#1: Use descriptive asserts, test 
names

• Assertions: take advantage of expected & actual 
values

• Make sure you have the right order:

  assertEquals(message, expected, actual)

• Use the right assert for the occasion:

assertEquals(expected, actual) instead of assertTrue(expected.equals(actual)) 
or assertTrue(expected==actual)

assertTrue(b) instead of assertEquals(true, b)



#1: Use descriptive asserts, test 
names

• Assertion message: contribute new information

– No need to repeat expected/actual values or info in test name

– e.g. details of what happened before the failure

Example:

  @Test

  public void test_addDays_wrapToNextMonth() {

      Date actual = new Date(2050, 2, 15);

      actual.addDays(14);

      Date expected = new Date(2050, 3, 1);

      assertEquals("date after +14 days", expected, actual);

  }

 



Let’s put it all together!
public class DateTest {

    

   ...

   // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, actual);

    }
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        assertEquals("date after +14 days", expected, actual);

    }

Let’s put it all together!

Descriptive method 
name



public class DateTest {

    

    ...

    // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, 

actual);

    }

Let’s put it all together!

Tells JUnit that this 
method is a test to 
run



public class DateTest {

    

   ...

   // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, actual);

    }

Let’s put it all together!

Variables names 
describe function of 
each object



public class DateTest {

    

   ...

   // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, actual);

    }

Let’s put it all together!

Use assertion to 
check expected 
results



public class DateTest {

    

   ...

   // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, actual);

    }

Let’s put it all together!

Message gives 
details about the 
test in case of 
failure



public class DateTest {

    

    ...

    // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, actual);

    }

Let’s put it all together!

Expected value 
first, actual value 
second



public class DateTest {

    

   ...

   // Test addDays when it causes a rollover between months

    @Test

    public void testAddDaysWrapToNextMonth() {

        Date actual = new Date(2050, 2, 15);

        actual.addDays(14);

        Date expected = new Date(2050, 3, 1);

        assertEquals("date after +14 days", expected, actual);

    }

Let’s put it all together!

That’s it! Test is 
short & sweet



#2: Keep tests small

• Ideally, each test only tests one “thing”

– One “thing” usually means one method under one input 
condition

• Where possible, only test one method at a time

– Not always possible – but if you test x() using y(), try to 
test y() in isolation in another test

– E.g. if you test add() using contains(), separately test 
contains() before any items are added



#2: Keep tests small

• Only a few (likely one) assert statements 
per test

– Test halts after first failed assertion

– Don’t know whether later assertions would have 
failed

• Low-granularity tests help you isolate bugs

– Tell you exactly what failed and what didn’t



What NOT to do

• IntArrayTest

• What’s wrong?

file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTest.java
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What NOT to do

• IntArrayTest

• What’s wrong?

• testIntArray tests way too many things

– Too many methods, array states

• Solution: break down by method being 
tested and/or state of array

• IntArrayTestBetter

file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTest.java
file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTestBetter.java


#3: Choose the right tests

• Given a finite number of tests, want 
reasonable confidence in an infinite 
number of inputs

• Input = initial state of object + 
method arguments + …



#3: Choose the right tests

• For each method, ask: what are the 
equivalence classes?

– Items in a collection: none, one, many

• Write a test for each equivalence 
class



#3: Choose the right tests
• Consider common input categories

– Math.abs(): negative, zero, positive values

• Consider boundary cases

– Inputs on the boundary between equivalence classes

– Person.isMinor(): age < 18, age == 18, age > 18

• Consider edge cases

– -1, 0, 1, empty list, arr.length, arr.length-1

• Consider error cases

– Empty list, null object



#3: Choose the right tests
• Consider common input categories

– Math.abs(): negative, zero, positive values

• Consider boundary cases

– Inputs on the boundary between equivalence classes

– Person.isMinor(): age < 18, age == 18, age > 18

• Consider edge cases

– -1, 0, 1, empty list, arr.length, arr.length-1

• Consider error cases

– Empty list, null object



Other guidelines

• Test all methods

– Caveat: constructors don’t necessarily need explicit testing

• Keep tests simple – avoid complicated logic

– minimize if/else, loops, switch, etc.

– Don’t want to debug your tests!

• Tests should always have at least one assert

– Unless testing that an exception is thrown

– Simply testing that an exception is not thrown is not necessary

– assertTrue(true); doesn’t count!



Other guidelines

• Tests should be isolated 

– Not dependent on side effects of other 
tests

– Should be able to run in any order

• Use helper methods to factor out 
common operations

– E.g. setting up initial state of an object



• Methods to run before/after each test case method is 
called:

    @Before
    public void name() { ... }
    @After
    public void name() { ... }

• Methods to run once before/after the entire test class 
runs:

       @BeforeClass
    public static void name() { ... }
    @AfterClass
    public static void name() { ... }

Setup and Teardown



Example: Date
– public Date(int year, int month, int day)
– public Date()                   // today
– public int getDay(), getMonth(), getYear()
– public void addDays(int days)   // advances by days
– public int daysInMonth()
– public String dayOfWeek()       // e.g. "Sunday"
– public boolean equals(Object o)
– public boolean isLeapYear()
– public void nextDay()         // advances by 1 day
– public String toString()

• Come up with unit tests to check the following:
– That no Date object can ever get into an invalid state.

– That the addDays method works properly.

– It should be efficient enough to add 1,000,000 days in a call.



Example: IntStack

• What tests should we write?

file:///home/kinjyen/331/sections/section4/section4-src/IntStack.html


More examples

• How would we test the following 
Collections interface methods:

• Collections.binarySearch

• Collections.sort

• …

• (Assume the List we pass in has 
already been tested)

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html


JUnit Summary
• Tests need failure atomicity  (ability to know exactly what failed).

– Each test should have a descriptive name.

– Assertions should have clear messages to know what failed.

– Write many small tests, not one big test.

• Test for expected errors / exceptions.

• Choose a descriptive assert method, not always assertTrue.

• Choose representative test cases from equivalent input classes.

• Avoid complex logic in test methods if possible.

• Use helpers, @Before to reduce redundancy between tests.



Homework 5

• Design, spec, build, and test your 

own Graph ADT

• No starter source code

• Unique testing framework



Graph Explanation
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HW 5 Explanation

• Specification

– Design your classes, how they fit 

together, what operations look like

– Don’t write a “kitchen sink” or “god” 

class



HW 5 Testing

• Specification vs. Implementation Tests

– Implementation tests

– JUnit tests

– Black box & White box

– Specification tests

– We want to see if your program actually implements a 
Graph properly

– Issue commands like AddNode, AddEdge, ListNode, 
ListEdge, checked externally

– Black box by necessity



HW5TestDriver

• Specification Tests

– Commands run on your program

– For each test

– Run the commands in the file ending in .test

– Save output in .actual

– Compared to .expected

• Demo in Eclipse



Design Brainstorming

• Work by yourself first, then compare with 
neighbors

• Two implementation strategies

– As an incidence list, in which each vertex 
stores its edges and each edge stores its 
connected vertices.

– As an adjacency matrix, which explicitly 
represents, for every pair ⟨A,B⟩ of edges, 
whether there is a link from A to B, and how 
many.



Design Review

• Share what you came up with, RI, and AF

• Runtime/Space complexity of various 
operations

– Which is faster for

– Seeing if two vertices are adjacent?

– Adding a vertex?

– Adding an edge?

– Which takes more memory on sparse/dense graphs
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