
Building Tests and hw5

10-17-2012
Section 4

Slides by Kellen Donohue, with material from Krysta Yousoufian

Agenda

• Assignments

– hw2 will be returned soon

– hw3 being returned

– hw4 due tonight

– hw5 released

• Building a test suite

• HW5 warm-up

Unit Test Best Practices
How to craft well-written JUnit tests

#1: Use descriptive asserts, test
names

• When a test fails, JUnit tells you:

– Name of test method

– Message passed into failed assertion

– Expected and actual values of failed assertion

– Stack trace

• The more descriptive this information is, the easier it is to
diagnose failures

• Avoid System.out.println()

– Want any diagnostic info to be captured by JUnit and associated
with that test method

#1: Use descriptive asserts, test
names

• Test name: describe what’s being tested

– Good: “testAddDaysWithinMonth,” …

– Not so good: “testAddDays1,” “testAddDays2,” …

– Useless: “test1,” “test2,” …

– Overkill:
“testAddDaysOneDayAndThenFiveDaysThenNegati
veFourDaysStartingOnJanuaryTwentySeventhAndM
akeSureItRollsBackToJanuaryAfterRollingToFebruary(
)”

#1: Use descriptive asserts, test
names

• Test name: describe what’s being tested

– Good: “testAddDaysWithinMonth,” …

– Not so good: “testAddDays1,” “testAddDays2,” …

– Useless: “test1,” “test2,” …

– Overkill:
“testAddDaysOneDayAndThenFiveDaysThenNegati
veFourDaysStartingOnJanuaryTwentySeventhAndM
akeSureItRollsBackToJanuaryAfterRollingToFebruary(
)”

#1: Use descriptive asserts, test
names

• Assertions: take advantage of expected & actual
values

• Make sure you have the right order:

 assertEquals(message, expected, actual)

• Use the right assert for the occasion:

assertEquals(expected, actual) instead of assertTrue(expected.equals(actual))
or assertTrue(expected==actual)

assertTrue(b) instead of assertEquals(true, b)

#1: Use descriptive asserts, test
names

• Assertion message: contribute new information

– No need to repeat expected/actual values or info in test name

– e.g. details of what happened before the failure

Example:

 @Test

 public void test_addDays_wrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!
public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!

Descriptive method
name

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

actual);

 }

Let’s put it all together!

Tells JUnit that this
method is a test to
run

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!

Variables names
describe function of
each object

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!

Use assertion to
check expected
results

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!

Message gives
details about the
test in case of
failure

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!

Expected value
first, actual value
second

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

Let’s put it all together!

That’s it! Test is
short & sweet

#2: Keep tests small

• Ideally, each test only tests one “thing”

– One “thing” usually means one method under one input
condition

• Where possible, only test one method at a time

– Not always possible – but if you test x() using y(), try to
test y() in isolation in another test

– E.g. if you test add() using contains(), separately test
contains() before any items are added

#2: Keep tests small

• Only a few (likely one) assert statements
per test

– Test halts after first failed assertion

– Don’t know whether later assertions would have
failed

• Low-granularity tests help you isolate bugs

– Tell you exactly what failed and what didn’t

What NOT to do

• IntArrayTest

• What’s wrong?

file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTest.java

What NOT to do

• IntArrayTest

• What’s wrong?

file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTest.java

What NOT to do

• IntArrayTest

• What’s wrong?

• testIntArray tests way too many things

– Too many methods, array states

• Solution: break down by method being
tested and/or state of array

• IntArrayTestBetter

file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTest.java
file:///home/kinjyen/331/sections/section4/section4-src/IntArrayTestBetter.java

#3: Choose the right tests

• Given a finite number of tests, want
reasonable confidence in an infinite
number of inputs

• Input = initial state of object +
method arguments + …

#3: Choose the right tests

• For each method, ask: what are the
equivalence classes?

– Items in a collection: none, one, many

• Write a test for each equivalence
class

#3: Choose the right tests
• Consider common input categories

– Math.abs(): negative, zero, positive values

• Consider boundary cases

– Inputs on the boundary between equivalence classes

– Person.isMinor(): age < 18, age == 18, age > 18

• Consider edge cases

– -1, 0, 1, empty list, arr.length, arr.length-1

• Consider error cases

– Empty list, null object

#3: Choose the right tests
• Consider common input categories

– Math.abs(): negative, zero, positive values

• Consider boundary cases

– Inputs on the boundary between equivalence classes

– Person.isMinor(): age < 18, age == 18, age > 18

• Consider edge cases

– -1, 0, 1, empty list, arr.length, arr.length-1

• Consider error cases

– Empty list, null object

Other guidelines

• Test all methods

– Caveat: constructors don’t necessarily need explicit testing

• Keep tests simple – avoid complicated logic

– minimize if/else, loops, switch, etc.

– Don’t want to debug your tests!

• Tests should always have at least one assert

– Unless testing that an exception is thrown

– Simply testing that an exception is not thrown is not necessary

– assertTrue(true); doesn’t count!

Other guidelines

• Tests should be isolated

– Not dependent on side effects of other
tests

– Should be able to run in any order

• Use helper methods to factor out
common operations

– E.g. setting up initial state of an object

• Methods to run before/after each test case method is
called:

 @Before
 public void name() { ... }
 @After
 public void name() { ... }

• Methods to run once before/after the entire test class
runs:

 @BeforeClass
 public static void name() { ... }
 @AfterClass
 public static void name() { ... }

Setup and Teardown

Example: Date
– public Date(int year, int month, int day)
– public Date() // today
– public int getDay(), getMonth(), getYear()
– public void addDays(int days) // advances by days
– public int daysInMonth()
– public String dayOfWeek() // e.g. "Sunday"
– public boolean equals(Object o)
– public boolean isLeapYear()
– public void nextDay() // advances by 1 day
– public String toString()

• Come up with unit tests to check the following:
– That no Date object can ever get into an invalid state.

– That the addDays method works properly.

– It should be efficient enough to add 1,000,000 days in a call.

Example: IntStack

• What tests should we write?

file:///home/kinjyen/331/sections/section4/section4-src/IntStack.html

More examples

• How would we test the following
Collections interface methods:

• Collections.binarySearch

• Collections.sort

• …

• (Assume the List we pass in has
already been tested)

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html

JUnit Summary
• Tests need failure atomicity (ability to know exactly what failed).

– Each test should have a descriptive name.

– Assertions should have clear messages to know what failed.

– Write many small tests, not one big test.

• Test for expected errors / exceptions.

• Choose a descriptive assert method, not always assertTrue.

• Choose representative test cases from equivalent input classes.

• Avoid complex logic in test methods if possible.

• Use helpers, @Before to reduce redundancy between tests.

Homework 5

• Design, spec, build, and test your

own Graph ADT

• No starter source code

• Unique testing framework

Graph Explanation

1
4

3
2

A

D

C

B

E

HW 5 Explanation

• Specification

– Design your classes, how they fit

together, what operations look like

– Don’t write a “kitchen sink” or “god”

class

HW 5 Testing

• Specification vs. Implementation Tests

– Implementation tests

– JUnit tests

– Black box & White box

– Specification tests

– We want to see if your program actually implements a
Graph properly

– Issue commands like AddNode, AddEdge, ListNode,
ListEdge, checked externally

– Black box by necessity

HW5TestDriver

• Specification Tests

– Commands run on your program

– For each test

– Run the commands in the file ending in .test

– Save output in .actual

– Compared to .expected

• Demo in Eclipse

Design Brainstorming

• Work by yourself first, then compare with
neighbors

• Two implementation strategies

– As an incidence list, in which each vertex
stores its edges and each edge stores its
connected vertices.

– As an adjacency matrix, which explicitly
represents, for every pair ⟨A,B⟩ of edges,
whether there is a link from A to B, and how
many.

Design Review

• Share what you came up with, RI, and AF

• Runtime/Space complexity of various
operations

– Which is faster for

– Seeing if two vertices are adjacent?

– Adding a vertex?

– Adding an edge?

– Which takes more memory on sparse/dense graphs

	Slide 1
	Agenda
	Unit Test Best Practices
	#1: Use descriptive asserts, test names
	#1: Use descriptive asserts, test names
	Slide 6
	#1: Use descriptive asserts, test names
	#1: Use descriptive asserts, test names
	Let’s put it all together!
	Let’s put it all together!
	Let’s put it all together!
	Let’s put it all together!
	Let’s put it all together!
	Let’s put it all together!
	Let’s put it all together!
	Let’s put it all together!
	#2: Keep tests small
	#2: Keep tests small
	What NOT to do
	Slide 20
	What NOT to do
	#3: Choose the right tests
	#3: Choose the right tests
	#3: Choose the right tests
	Slide 25
	Other guidelines
	Other guidelines
	Slide 28
	Example: Date
	Example:
	More examples
	JUnit Summary
	Homework 5
	Graph Explanation
	HW 5 Explanation
	HW 5 Testing
	HW5TestDriver
	Design Brainstorming
	Design Review

