
CSE 331 
Software Design & Implementation 

Hal Perkins 
Winter 2013 

Design Patterns Part 2 
(Slides by Mike Ernst and David Notkin) 

1 



Outline 

ü  Introduction to design patterns 
ü Creational patterns (constructing objects) 
⇒ Structural patterns (controlling heap layout) 
•  Behavioral patterns (affecting object semantics) 

2 



Structural patterns:  Wrappers 

•  A wrapper translates between incompatible interfaces  
•  Wrappers are a thin veneer over an encapsulated class  

–  modify the interface 
–  extend behavior 
–  restrict access  

•  The encapsulated class does most of the work 

Pattern Functionality Interface 

Adapter same different 

Decorator different same 

Proxy same same 

3 



Adapter 

•  Change an interface without changing functionality 
–  rename a method 
–  convert units 
–  implement a method in terms of another 

•  Example:  angles passed in radians vs. degrees 

4 



Adapter example:  scaling rectangles 
•  We have this Rectangle interface 

interface Rectangle { 
  // grow or shrink this by the given factor 
  void scale(float factor); 
  ... 
  float getWidth(); 
  float area();  
} 

•  Goal: we want to use instances of this class to “implement” Rectangle: 

class NonScaleableRectangle { // not a Rectangle 
  void setWidth(float width) { ... } 
  void setHeight(float height) { ... } 

 // no scale method 
  ... 
} 

5 



Adaptor: Use subclassing 

class ScaleableRectangle1 extends NonScaleableRectangle 
                          implements Rectangle { 
  void scale(float factor) { 
    setWidth(factor * getWidth()); 
    setHeight(factor * getHeight()); 
  } 
} 
 

6 



Adaptor: use delegation 

Delegation:  forward requests to another object 
 

class ScaleableRectangle2 implements Rectangle { 
  NonScaleableRectangle r; 
  ScaleableRectangle2(w,h) { 
    this.r = new NonScaleableRectangle(w,h); 
  } 
 
  void scale(float factor) { 
    setWidth(factor * r.getWidth()); 
    setHeight(factor * r.getHeight()); 
  } 
 
  float getWidth() { return r.getWidth(); } 
  float circumference() { return r.circumference(); } 
  ... 
} 

7 



Subclassing vs. delegation 

•  Subclassing 
–  automatically gives access to all methods of superclass 
–  built into the language (syntax, efficiency) 

•  Delegation 
–  permits cleaner removal of methods (compile-time checking) 
–  wrappers can be added and removed dynamically 
–  objects of arbitrary concrete classes can be wrapped 
–  multiple wrappers can be composed 

•  Some wrappers have qualities of more than one of adapter, 
decorator, and proxy 

•  Delegation vs. composition 
–  Differences are subtle 
–  For CSE 331, consider them to be equivalent  

8 



Decorator 

•  Add functionality without changing the interface 

•  Add to existing methods to do something additional 
(while still preserving the previous specification) 

•  Not all subclassing is decoration 

9 



Decorator example:  Bordered windows 

interface Window { 
  // rectangle bounding the window 
  Rectangle bounds(); 
  // draw this on the specified screen 
  void draw(Screen s); 
  ... 
} 
 
class WindowImpl implements Window { 
  ... 
} 
 

10 



Bordered window implementations 

Via subclasssing: 
class BorderedWindow1 extends WindowImpl { 
  void draw(Screen s) { 
    super.draw(s); 
    bounds().draw(s); 
  } 
} 

 
Via delegation: 

class BorderedWindow2 implements Window { 
  Window innerWindow; 
  BorderedWindow2(Window innerWindow) { 
    this.innerWindow = innerWindow; 
  } 
  void draw(Screen s) { 
    innerWindow.draw(s); 
    innerWindow.bounds().draw(s); 
  } 
} 
 

Delegation permits multiple 
borders on a window, or a window 
that is both bordered and shaded 
(or either one of those) 

11 



A decorator can remove functionality 

•  Remove functionality without changing the interface 

•  Example:  UnmodifiableList 
–  What does it do about methods like add and put? 

12 



Proxy 

•  Same interface and functionality as the wrapped class 

•  Control access to other objects 
–  communication:  manage network details when using a 

remote object 
–  locking:  serialize access by multiple clients 
–  security:  permit access only if proper credentials 
–  creation:  object might not yet exist (creation is 

expensive) 
•  hide latency when creating object 
•  avoid work if object is never used 

13 


