
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2013

Exceptions and Assertions
(Slides by Mike Ernst and David Notkin)

1

Failure causes

Partial failure is inevitable
Goal: prevent complete failure
Structure your code to be reliable and understandable

Some failure causes:
1. Misuse of your code

Precondition violation
2. Errors in your code

Bugs, representation exposure, many more
3. Unpredictable external problems

Out of memory
Missing file
Memory corruption

How would you categorize these?
Failure of a subcomponent
No return value (e.g., list element not found, division by zero)

2

Avoiding errors

A precondition prohibits misuse of your code
Adding a precondition weakens the spec

This ducks the problem
Does not address errors in your own code
Does not help others who are misusing your code

Removing the precondition requires specifying the
behavior (often a good thing, but there are tradeoffs)
Strengthens the spec
Example: specify that an exception is thrown

3

Defensive programming

Check
precondition
postcondition
representation invariant
other properties that you know to be true

Check statically via reasoning (& tools)
Check dynamically at run time via assertions

assert index >= 0;
assert size % 2 == 0 : “Bad size for ” +
 toString();

Write the assertions as you write the code

4

Enabling assertions

In Java, assertions can be enabled or disabled at
runtime without recompiling the program
Command line:

java -ea runs code with assertions enabled
java runs code with assertions disabled (default)

Eclipse:
Pick Run>Run Configurations… then add -ea to VM
arguments under (x)=arguments tab

5

When not to use assertions

Don’t clutter the code
x = y + 1;
assert x == y + 1; // useless, distracting

Don’t perform side effects
assert list.remove(x); // won’t happen if disabled

// Better:
boolean found = list.remove(x);
assert found;

Turn them off in rare circumstances (production
code(?))
Most assertions should always be enabled

6

assert and checkRep()

CSE 331’s checkRep() is another dynamic check
Strategy: use assert in checkRep() to test and fail with
meaningful traceback/message if trouble found

Be sure to enable asserts when you do this!
Expensive checkRep()s

Detailed checks can be too slow in production
Even if asserts are disabled, if checkRep has a deep
loop nest it takes lots of time to do nothing

No great answers
Maybe call checkRep only if asserts are enabled?

(e.g., assert checkRep())
Maybe comment out expensive tests if needed?
Maybe add a “debugLevel” variable to control which
tests are run and extensive/expensive they are?

7

What to do when something goes wrong
Something goes wrong: an assertion fails (or would have

failed if it were there)
Fail early, fail friendly
Goal 1: Give information about the problem

To the programmer
A good error message is key!

To the client code
Goal 2: Prevent harm from occurring

Abort: inform a human
Perform cleanup actions, log the error, etc.

Re-try
Problem might be transient

Skip a subcomputation
Permit rest of program to continue

Fix the problem (usually infeasible)
External problem: no hope; just be informative
Internal problem: if you can fix, you can prevent

8

Square root without exceptions

// requires: x ≥ 0
// returns: approximation to square root of x
public double sqrt(double x) {
 ...
}

9

Square root with assertion

// requires: x ≥ 0
// returns: approximation to square root of x
public double sqrt(double x) {
 double result;
 ... // compute result
 assert (Math.abs(result*result – x) < .0001);
 return result;
}

10

Square root, specified for all inputs

// throws: IllegalArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x) throws

IllegalArgumentException
{
 if (x < 0)
 throw new IllegalArgumentException();
 ...
}

11

Using try-catch to handle exceptions

// throws: IllegalArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x) throws

IllegalArgumentException
 ...

Client code:
try {
 y = sqrt(-1);
} catch (IllegalArgumentException e) {
 e.printStackTrace(); // or take some other action
}
Handled by catch associated with nearest dynamically enclosing try

Top-level default handler: stack trace, program terminates

12

Throwing and catching

At run time, your program has a stack
of currently executing methods

Dynamic: reflects runtime order of
method calls
No relation to static nesting of
classes or packages or such

When an exception is thrown, control
transfers to nearest method with a
matching catch block

If none found, top-level handler
prints a stack trace & terminates

Exceptions allow non-local error
handling

A method many levels up the stack
can handle a deep error

13

The finally block
try {
 code…
} catch (type name) {
 code… to handle the exception
} finally {
 code… to run after the try or catch finishes
}

finally is often used for common, “must-always-run” / “clean-up” code

try {
 // ... read from out; might throw
} catch (IOException e) {
 System.out.println("Caught IOException: “
 + e.getMessage());
} finally {
 out.close();
}

14

Propagating an exception

// returns: x such that ax^2 + bx + c = 0
// throws: IllegalArgumentException if no real soln exists
double solveQuad(double a, double b, double c) throws

IllegalArgumentException
{
 // No need to catch exception thrown by sqrt
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
}

 How can clients know if a set of arguments to
solveQuad is illegal?

15

Exception translation
// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c) throws NotRealException
{
 try {
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
 } catch (IllegalArgumentException e) {
 throw new NotRealException();
 }
}

class NotRealException extends Exception {
 NotRealException() { super(); }
 NotRealException(String message) { super(message); }
 NotRealException(Throwable cause) { super(cause); }
 NotRealException(String msg, Throwable c) { super(msg, c); }
}

Exception chaining:
throw new NotRealException(e);

16

Exceptions as non-local control flow

void compile() {
 try {
 parse();
 typecheck();
 optimize();
 generate():
 } catch (RuntimeException e) {
 Logger.log(“Failed: ” + e.getMessage());
 }
}

Not common – usually not-so-great style to use exceptions for
routine control flow. (More plausible at higher-level)
Java/C++, etc. exceptions are expensive if thrown/caught.
Best to reserve exceptions for exceptional conditions.

17

Informing the client of a problem

Special value
null – Map.get
-1 – indexOf
NaN – sqrt of negative number

Problems with using special value
Hard to distinguish from real results
Error-prone: what if the programmer forgets to

check result?
Needs to be a value that cannot be a legal result

and best if it will trigger a failure later
Ugly

A better solution(?): exceptions (but there are tradeoffs)
18

Two distinct uses of exceptions

Failures
Unexpected
Should be rare with well-written client and library
Can be the client’s fault or the library’s
Usually unrecoverable

Special results
Expected
Unpredictable or unpreventable by client

19

Handling exceptions

Failures
Usually can’t recover
If the condition is not checked, the exception

propagates up the stack
The top-level handler prints the stack trace

Special results
Take special action and continue computing
Should always check for this condition
Should handle locally

20

Why catch exceptions locally?

Failure to catch exceptions violates modularity
Call chain: A → IntegerSet.insert → IntegerList.insert
IntegerList.insert throws an exception

Implementer of IntegerSet.insert knows how list is being
used

Implementer of A may not even know that IntegerList
exists

Procedure on the stack may think that it is handling an
exception raised by a different call

Better alternative: catch it and throw it again
“chaining” or “translation”
Do this even if the exception is better handled up a level
Makes it clear to reader of code that it was not an

omission
21

Java exceptions for failures and for
special cases
Checked exceptions for special cases

Library: must declare in signature
Client: must either catch or declare

Even if you can prove it will never happen at run time
There is guaranteed to be a dynamically enclosing catch

Unchecked exceptions for failures
Library: no need to declare
Client: no need to catch
RuntimeException and Error

and their subclasses

Throwable

Runtime-
Exception

Error Exception

checked
exceptions

…

22

exception hierarchy

23

Catching with inheritance

try {
 code…
} catch (FileNotFoundException fnfe) {
 code… to handle the file not found exception
} catch (IOException ioe) {
 code… to handle any other I/O exception
} catch (Exception e) {
 code to handle any other exception
}

•  a SocketException would match the second block
•  an ArithmeticException would match the third block

24

Avoid proliferation of checked exceptions

Unchecked exceptions are better if clients will usually write
code that ensures the exception will not happen
i.e., there is a convenient and inexpensive way to avoid it
The exception reflects unanticipatable failures

Otherwise use a checked exception
Must be caught and handled – prevents program defects
Checked exceptions should be locally caught and handled
Checked exceptions that propagate long distances

suggests bad design (failure of modularity)
Java sometimes uses null (or NaN, etc.) as a special value

Acceptable if used judiciously, carefully specified
Easy to forget to check

25

Don’t ignore exceptions

•  Effective Java Tip #65: Don't ignore exceptions

•  An empty catch block is (a common) poor style – often
done to get code to compile or hide an error
try {
 readFile(filename);
} catch (IOException e) {} // do nothing on error

•  At a minimum, print out the exception so you know it
happened
} catch (IOException e) {
 e.printStackTrace(); // just in case
}

26

Exceptions: review

Use an exception when
Used in a broad or unpredictable context
Checking the condition is feasible

Use a precondition when
Checking would be prohibitive

E.g., requiring that a list be sorted
Used in a narrow context in which calls can be checked

Avoid preconditions because
Caller may violate precondition
Program can fail in an uninformative or dangerous way
Want program to fail as early as possible

How do preconditions and exceptions differ, for the client?

27

Exceptions: review, continued

Use checked exceptions most of the time
Handle exceptions sooner rather than later
Not all exceptions are errors

A program structuring mechanism with non-local
jumps (expensive, should be rare)

Used for exceptional (unpredictable) circumstances

28

Exceptions vs assertions

Both can be used to check for errors. No universal
consensus on which to use where. But general guidelines:
Exceptions

Use for defensive programming, particularly checks at
public API interfaces
Use to signal when client can or could recover, or
otherwise handle a situation

Assertions
Use for internal consistency checks – things that should
“never happen”
Use to catch things that are bugs and should be fixed
Use for expensive checks during development/debugging

Good reference on all of this: Bloch Effective Java, ch. 9

29

