
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2013

Module Design and General Style Guidelines
(Based on slides by David Notkin and Mike Ernst)

1

Style: It isn’t just about fashion…

“Use the active voice.”
“Omit needless words.”

“Don't patch bad code - rewrite it.”
“Make sure your code 'does nothing'

gracefully.”

2

Modules

A module is a relatively general term for a class or a
type or any kind of design unit in software

A modular design focuses on what modules are defined,
what their specifications are, how they relate to each
other, but not usually on the implementation of the
modules themselves

3

Ideals of modular software

Decomposable – can be broken down into
modules to reduce complexity and allow
teamwork
Composable – “Having divided to conquer, we
must reunite to rule [M. Jackson].”
Understandable – one module can be
examined, reasoned about, developed, etc. in
isolation
Continuity – a small change in the requirements
should affect a small number of modules
Isolation – an error in one module should be as
contained as possible

4

Two general design issues

Cohesion – how well components fit together to form
something that is self-contained, independent, and with
a single, well-defined purpose
Coupling – how much dependency there is between
components

Guideline: reduce coupling, increase cohesion
Applies to modules and individual routines

Each method should do one thing well
Each module should provide a single abstraction

5

Cohesion

The most common reason to put data and behavior
together is to form an ADT (data abstraction)

There are, at least historically, other reasons to place elements
together – for example, for performance reasons it was
sometimes good to place together all code to be run upon
initialization of a program

The common design objective of separation of concerns
suggests a module should address a single set of
concerns

6

Coupling
How are modules dependent on one another?

Statically (in the code)? Dynamically (at run-time)? More?
Ideally, split design into parts that don't interact much

Roughly, the more coupled modules are, the more they need to be
thought of as a single, larger module

An	
 applica)on	
 A	
 poor	
 decomposi)on	

(parts	
 strongly	
 coupled)	

A	
 be7er	
 decomposi)on	

(parts	
 weakly	
 coupled)	

MY	

FINAL	

PROJECT	

MY	

FINAL	
 PROJECT	

MY	

FINECT	
 PROJAL	

7

Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark
path, forever will it dominate
your destiny, consume you it will

8

Law of Demeter
Karl Lieberherr and colleagues

Law of Demeter: An object should know as little as
possible about the internal structure of other objects
with which it interacts – a question of coupling
Or… “only talk to your immediate friends”
Closely related to representation exposure and (im)
mutability
Bad example – too-tight chain of coupling between
classes
general.getColonel().getMajor(m).getCaptain(cap)
 .getSergeant(ser).getPrivate(name).digFoxHole();

Better example
general.superviseFoxHole(m, cap, ser, name);

 9

An object should only send
messages to … (More Demeter)

itself (this)
its instance variables
its methods’ parameters
any object it creates
any object returned by a call to one of this's methods
any objects in a collection of the above

notably absent: objects returned by messages sent to
other objects

Guidelines: not strict rules!
But thinking about them will
generally help you produce
better designs

10

God classes

god class: a class that hoards too much of the data or
functionality of a system

Poor cohesion – little thought about why all of the
elements are placed together
Only reduces coupling by collapsing multiple
modules into one (which reduces dependences
between modules to dependences within a module)

A god class is an example of an anti-pattern – it is a
known bad way of doing things

11

Method design

A method should do only one thing, and do it well – for example,
observe but not mutate, …
Effective Java (EJ) Tip #40: Design method signatures carefully

Avoid long parameter lists
Perlis: “If you have a procedure with ten parameters, you
probably missed some.”
Especially error-prone if parameters are all the same type
Avoid methods that take lots of boolean "flag" parameters

EJ Tip #41: Use overloading judiciously
Can be useful, but avoid overloading with same number of
parameters & think about whether methods really are related.

12

Cohesion again…

Methods should do one thing well:
Compute a value but let client decide what to do with it
Observe or mutate, don’t do both
Don’t print as a side effect of some other operation

Don’t limit future possible uses of the method by having it
do multiple, not-necessarily related things

If you’ve got a method that is doing too much, split it up

Maybe separate, unrelated methods; maybe one
method that does a task and another that calls it
“Flag” variables are often a symptom of this problem

13

Field design

A variable should be made into a field if and only if:
It is part of the inherent internal state of the object
It has a value that retains meaning throughout the
object's life
Its state must persist past the end of any one public
method

All other variables can and should be local to the methods
in which they are used

Fields should not be used to avoid parameter passing
Not every constructor parameter needs to be a field

14

Constructor design

Constructors should take all arguments necessary to initialize
the object's state – no more, no less
Don't make the client pass in things they shouldn't have to
Object should be completely initialized after constructor is done
Shouldn't need to call other methods to “finish” initialization
Minimize the work done in a constructor

A constructor should not do any heavy work, such as
printing state, or performing expensive computations
If an object's creation is heavyweight, use a static
method instead

15

Naming

Choose good names for classes and interfaces
Class names should be nouns

Watch out for "verb + er" names, e.g. Manager, Scheduler,
ShapeDisplayer
Interface names often end in -able or -ible, e.g. Iterable,
Comparable

Method names should be noun or verb phrases (nouns
for observers, verbs for mutators, etc…)

Observer methods can be nouns like size or totalQuantity
Many observers should be named with "get" or "is" or "has"
Most mutators should be named with "set" or similar
Choose affirmative, positive names over negative ones

isSafe not isUnsafe
isEmpty not hasNoElements

EJ Tip #56: Adhere to generally accepted naming
conventions

16

Terrible names…

count, flag, status, compute, check, value,
pointer, any name starting with my…

These convey no useful information
myWidget is a cliché – sounds like picked by a 3-year-old
What others can you think of?

Describe what is being counted, what the “flag” indicates, etc.
numberOfStudents, courseFull, flightStatus (still not great),
calculatePayroll, validateWebForm, …

But short names in local contexts are good:
Good: for (i = 0; i < size; i++) items[i]=0;
Bad: for (theLoopCounter = 0;

 theLoopCounter < theCollectionSize;
 theLoopCounter++)
 theCollectionItems[theLoopCounter]=0;

17

Class design ideals

Cohesion and coupling, already discussed

Completeness: Every class should present a complete
interface
Clarity: Interface should make sense without confusion
Convenience: Provide simple ways for clients to do
common tasks
Consistency: In names, param/returns, ordering, and
behavior

18

Completeness

Include important methods to make a class easy to use
counterexample: A collection with add but no remove
counterexample: A tool object with a setHighlighted
method to select it, but no setUnhighlighted method
to deselect it
counterexample: Date class has no date-arithmetic
features

Related
Objects that have a natural ordering should implement
Comparable
Objects that might have duplicates should implement
equals
Almost all objects should implement toString

19

But…

Don’t include everything you can possibly think of
If you include it you’re stuck with it forever (even if
almost nobody ever uses it)

Tricky balancing act: include what’s needed/useful, but
don’t make things overly complicated

You can always add it later if you really need it

“Everything should be made as simple as possible,
 but not simpler.”

- Einstein

20

Consistency

A class or interface should have consistent names,
parameters/returns, ordering, and behavior
Use a similar naming scheme; accept parameters in the
same order – not like

setFirst(int index, String value)
setLast(String value, int index)

Some counterexamples
Date/GregorianCalendar use 0-based months
String methods: equalsIgnoreCase,
 compareToIgnoreCase;
 but regionMatches(boolean ignoreCase)

String.length(), array.length, collection.size()

21

Clarity and Convenience

Clarity: An interface should make sense without creating
confusion

Even without fully reading the spec/docs, a client should
largely be able to follow his/her natural intuitions about
how to use your class – although reading and precision
are crucial
Counterexample: Iterator's remove method

Convenience: Provide simple ways for clients to do common
tasks

If you have a size / indexOf, include isEmpty /
contains, too
Counterexample: System.in is terrible; finally fixed with
Scanner

22

Open-Closed Principle

Software entities should be open for extension, but
closed for modification

When features are added to your system, do so by
adding new classes or reusing existing ones in new
ways
If possible, don't make change by modifying existing
ones – existing code works and changing it can
introduce bugs and errors.

Related: Code to interfaces, not to classes
Ex: accept a List parameter, not ArrayList or
LinkedList
EJ Tip #52: Refer to objects by their interfaces

23

Cohesion again (“expert pattern”)

The class that contains most of the data needed to
perform a task should perform the task

counterexample: A class with lots of getters but not a
lot of methods that actually do work – relies on other
classes to “get” the data and process it externally

Reduce duplication
Only one class should be responsible for maintaining
a set of data, even (especially) if it is used by many
other classes

24

Invariants

Class invariant: An assertion that is true about every
object of a class throughout each object’s lifetime

Ex: A BankAccount's balance will never be
negative

State them in your documentation, and enforce them in
your code

These are often representation invariants

25

Documenting a class

Keep internal and external documentation separate
external: /** ... */ Javadoc for classes, interfaces, and
methods

Describes things that clients need to know about the class
Should be specific enough to exclude unacceptable
implementations, but general enough to allow for all
correct implementations
Includes all pre/postconditons and abstract class invariants

internal: // comments inside method bodies
Describes details of how the code is implemented
Information that clients wouldn't and shouldn't need, but a
fellow developer working on this class would want –
invariants and internal pre/post conditions especially

26

The role of documentation
From Kernighan and Plauger

If a program is incorrect, it matters little what the docs say
If documentation does not agree with the code, it is not
worth much
Consequently, code must largely document itself. If not,
rewrite the code rather than increasing the documentation
of the existing complex code. Good code needs fewer
comments than bad code.
Comments should provide additional information from the
code itself. They should not echo the code.
Mnemonic variable names and labels, and a layout that
emphasizes logical structure, help make a program self-
documenting

27

Static vs. non-static design

What members should be static?
members that are related to an entire class
not related to the data inside a particular object of that
class’s type
Should I have to construct an object just to call this method?

Examples
Time.fromString
Math.pow
Calendar.getInstance
NumberFormatter.getCurrencyInstance
Arrays.toString? Collections.sort?

28

Public vs. private design

Strive to minimize the public interface of the classes
Clients like classes that are simple to use and understand
Reasoning is easier with narrower interfaces and
specifications

Achieve a minimal public interface by
Removing unnecessary methods – consider each one
Making everything private unless absolutely necessary
Pulling out unrelated behavior into a separate class

public static constants are okay if declared final
But still better to have a public static method to get
the value; why?
Or use enums if that’s what you’re trying to do

29

Choosing types – some hints

Numbers: Favor int and long for most numeric
computations

EJ Tip #48: Avoid float and double if exact answers
are required
Classic example: Representing money (round-off is
bad here)

Favor the use of collections (e.g. lists) over arrays
Strings are often overused since much data comes in as
text

30

Choosing types – more hints

Consider use of enums, even with only two values –
which of the following is better?

oven.setTemp(97, true);
oven.setTemp(97, Temperature.CELSIUS);

Wrapper types should be used minimally (usually with
collections)

EJ Tip #49: Prefer primitive types (int, double) to
boxed primitives (that is, Integer, Float, etc.)

Bad: public Tally(Character ch)

31

Independence of views

•  Confine user interaction to a core set of “view” classes
and isolate these from the classes that maintain the key
system data

•  Do not put println statements in your core classes
–  This locks your code into a text representation
–  Makes it less useful if the client wants a GUI, a web

app, etc.
•  Instead, have your core classes return data that can be

displayed by the view classes
–  Which of the following is better?

 public void printMyself()
 public String toString()

32

