
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2013

Specifications
(Slides by Mike Ernst)

1

2 Goals of Software System Building

•  Building the right system
–  Does the program meet the user’s needs?
–  Determining this is usually called validation

•  Building the system right
–  Does the program meet the specification?
–  Determining this is usually called verification

•  CSE 331: the second goal is the focus – creating a
correctly functioning artifact
–  It’s surprisingly hard to specify, design, implement,

test, and debug even simple programs

2

Where we are

•  We’ve started to see how to reason about code
•  We’ll build on those skills in many places:

–  Specification: What are we supposed to build?
–  Design: How do we decompose the job into

manageable pieces? Which designs are “better”?
–  Implementation: Building code that meets the

specification (and we know it because we can prove it!)
–  Testing: OK, we know it’s right, but is it?
–  Debugging: If it’s not, how do we systematically find the

problems and fix them?
–  Maintain: How does the artifact adapt over time?
–  Documentation: What do we need to know to do these

things? How/where do we write that down?
(Comments, JavaDoc, UML(?), …)

3

The challenge of scaling software

•  Small programs are simple and malleable
–  easy to write
–  easy to change

•  Big programs are (often) complex and inflexible
–  hard to write
–  hard to change

•  Why does this happen?
–  Because interactions become unmanageable

•  How do we keep things simple and malleable?

4

A discipline of modularity

•  Two ways to view a program:
–  The implementer's view (how to build it)
–  The client's view (how to use it)

•  It helps to apply these views to program parts:
–  While implementing one part, consider yourself a

client of any other parts it depends on
–  Try not to look at those other parts through an

implementer's eyes
–  This helps dampen interactions between parts

•  Formalized through the idea of a specification

5

 A specification is a contract

•  A set of requirements agreed to by the user and the
manufacturer of the product
–  Describes their expectations of each other

•  Facilitates simplicity by two-way isolation
–  Isolate client from implementation details
–  Isolate implementer from how the part is used
–  Discourages implicit, unwritten expectations

•  Facilitates change
–  Reduces the “Medusa” effect: the specification,

rather than the code, gets “turned to stone” by
client dependencies

6

Isn’t the interface sufficient?

The interface is to defines the boundary between
the implementers and users:

 public interface List<E> {

 public E get(int);
 public void set(int, E);
 public void add(E);
 public void add(int, E);
 …
 public static boolean sub(List<T>, List<T>);
 }

 Interface provides the syntax
 But nothing about the behavior and effects

7

Why not just read code?

 boolean sub(List<?> src, List<?> part) {
 int part_index = 0;
 for (Object o : src) {
 if (o.equals(part.get(part_index))) {
 part_index++;
 if (part_index == part.size()) {
 return true;
 }
 } else {
 part_index = 0;
 }
 }
 return false;
 }

Why are you better off with a specification?

8

Code is complicated

•  Code gives more detail than needed by client
•  Understanding or even reading every line of code is

an excessive burden
–  Suppose you had to read source code of Java

libraries in order to use them
–  Same applies to developers of different parts of

the libraries
•  Client cares only about what the code does, not how

it does it

9

Code is ambiguous

•  Code seems unambiguous and concrete
–  But which details of code's behavior are essential,

and which are incidental?
•  Code invariably gets rewritten

–  Client needs to know what they can rely on
•  What properties will be maintained over time?
•  What properties might be changed by future

optimization, improved algorithms, or just bug
fixes?

–  Implementer needs to know what features the
client depends on, and which can be changed

10

Comments are essential

•  Most comments convey only an informal, general
idea of what that the code does:

 // This method checks if “part” appears as a
 // sub-sequence in “src”
 boolean sub(List<?> src, List<?> part) {

...
 }

•  Problem: ambiguity remains
– e.g. what if src and part are both empty

lists?

11

From vague comments to specifications

•  Properties of a specification:
–  The client agrees to rely only on information in the

description in their use of the part
–  The implementer of the part promises to support

everything in the description
•  otherwise is perfectly at liberty

•  Sadly, much code lacks a specification
–  Clients often work out what a method/class does

in ambiguous cases by simply running it, then
depending on the results

–  This leads to bugs and to programs with unclear
dependencies, reducing simplicity and flexibility

12

Recall the sublist example

 T boolean sub(List<T> src, List<T> part) {
 int part_index = 0;
 for (T elt : src) {
 if (elt.equals(part.get(part_index))) {
 part_index++;
 if (part_index == part.size()) {
 return true;
 }
 } else {
 part_index = 0;
 }
 }
 return false;
 }

13

A more careful description of sub()

 // Check whether “part” appears as a
 // sub-sequence in “src”.

needs to be given some caveats (why?):
 // * src and part cannot be null
 // * If src is empty list, always returns false.
 // * Results may be unexpected if partial matches
 // can happen right before a real match; e.g.,
 // list (1,2,1,3) will not be identified as a
 // sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:
 // This method scans the “src” list from beginning
 // to end, building up a match for “part”, and
 // resetting that match every time that...

14

It’s better to simplify
than to describe complexity

A complicated description suggests poor design
Rewrite sub() to be more sensible, and easier to
describe:

 // returns true iff sequences A, B exist such that
 // src = A : part : B
 // where “:” is sequence concatenation
 boolean sub(List<?> src, List<?> part)

Mathematical flavor is not (always) necessary, but can
(often) help avoid ambiguity
“Declarative” style is important – avoids reciting or
depending on operational/implementation details

15

Sneaky fringe benefit of specs #1

•  The discipline of writing specifications changes the
incentive structure of coding
–  rewards code that is easy to describe and

understand
–  punishes code that is hard to describe and

understand (even if it is shorter or easier to write)
•  If you find yourself writing complicated specifications,

it is an incentive to redesign
–  sub() code that does exactly the right thing may be

slightly slower than a hack that assumes no partial
matches before true matches – but cost of forcing
client to understand the details is too high

16

Examples of specifications

•  Javadoc
–  Sometimes can be daunting; get used to using it

•  Javadoc convention for writing specifications
–  method prototype
–  text description of method
–  param: description of what gets passed in
–  returns: description of what gets returned
–  throws: list of exceptions that may occur

17

Example: Javadoc for String.contains

public boolean contains(CharSequence s)
Returns true if and only if this string contains the

specified sequence of char values.
Parameters:
 s- the sequence to search for
Returns:
 true if this string contains s, false otherwise

Throws:
 NullPointerException

Since:
 1.5

18

CSE 331 specifications

•  The precondition: constraints that hold before the method is
called (if not, all bets are off)
–  requires: spells out any obligations on client

•  The postcondition: constraints that hold after the method is
called (if the precondition held)
–  modifies: lists objects that may be affected by method;

any object not listed is guaranteed to be untouched
–  throws: lists possible exceptions (Javadoc uses this too)
–  effects: gives guarantees on the final state of modified

objects
–  returns: describes return value (Javadoc uses this too)

19

Example 1

static int test(List<T> lst, T oldelt, T newelt)

 requires lst, oldelt, and newelt are non-null.
 oldelt occurs in lst.

 modifies lst

 effects change the first occurrence of oldelt in lst to newelt
 & makes no other changes to lst

 returns the position of the element in lst that was oldelt and is now newelt

static int test(List<T> lst, T oldelt, T newelt) {

 int i = 0;
 for (T curr : lst) {
 if (curr == oldelt) {
 lst.set(newelt, i);
 return i;
 }

i = i + 1;
 }
 return -1;
}

20

Example 2

static List<Integer> listAdd(List<Integer> lst1, List<Integer> lst2)
 requires lst1 and lst2 are non-null.

 lst1 and lst2 are the same size.
 modifies none
 effects none
 returns a list of same size where the ith element is

 the sum of the ith elements of lst1 and lst2

 static List<Integer> listAdd(List<Integer> lst1
 List<Integer> lst2) {
 List<Integer> res = new ArrayList<Integer>();
 for(int i = 0; i < lst1.size(); i++) {
 res.add(lst1.get(i) + lst2.get(i));
 }
 return res;
}

21

Example 3

static void listAdd2(List<Integer> lst1, List<Integer> lst2)
 requires lst1 and lst2 are non-null.

 lst1 and lst2 are the same size
 modifies lst1
 effects ith element of lst2 is added to the ith element of lst1
 returns none

static void listAdd2(List<Integer> lst1,

 List<Integer> lst2) {
 for(int i = 0; i < lst1.size(); i++) {
 lst1.set(i, lst1.get(i) + lst2.get(i));
 }
 }

22

Should requires clause be checked?

•  If the client calls a method without meeting the
precondition, the code is free to do anything, including
pass corrupted data back
–  It is polite, nevertheless, to fail fast: to provide an immediate

error, rather than permitting mysterious bad behavior
•  Preconditions are common in “helper” methods/classes

–  In public libraries, it’s friendlier to deal with all possible input
–  Example: binary search would normally impose a pre-

condition rather than simply failing if list is not sorted. Why?
•  Rule of thumb: Check if cheap to do so

–  Ex: list has to be non-null à check
–  Ex: list has to be sorted à skip

23

Comparing specifications

•  Occasionally, we need to compare different versions
of a specification (Why?)
–  For that, we talk about “weaker” and “stronger”

specifications
•  A weaker specification gives greater freedom to the

implementer
–  If specification S1 is weaker than S2, then for any

implementation I,
•  I satisfies S2 => I satisfies S1

•  but the opposite implication does not hold in
general

24

Example 1
 int find(int[] a, int value) {
 for (int i=0; i<a.length; i++) {
 if (a[i]==value) return i;
 }
 return -1;
 }

•  specification A
–  requires: value occurs in a
–  returns: i such that a[i] = value

•  specification B
–  requires: value occurs in a
–  returns: smallest i such that a[i] = value

25

Example 2

 int find(int[] a, int value) {
 for (int i=0; i<a.length; i++) {
 if (a[i]==value) return i;
 }
 return -1;
 }

•  specification A
–  requires: value occurs in a
–  returns: i such that a[i] = value

•  specification C
–  returns: i such that a[i]=value, or -1 if value is not in a

26

Stronger and weaker specifications

•  A stronger specification is
–  Harder to satisfy (harder to implement)
–  Easier to use (more guarantees, more predictable)

•  A weaker specification is
–  Easier to satisfy (easier to implement, more

implementations satisfy it)
–  Harder to use (makes fewer guarantees)

27

Strengthening a specification

•  strengthen a specification by:
–  promising more

•  effects clause harder to satisfy, and/or fewer objects
in modifies clause

–  asking less of client
•  requires clause easier to satisfy

•  weaken a specification by:
–  promising less

•  effects clause easier to satisfy, and/or extra objects
in modifies clause

–  asking more of the client
•  requires clause harder to satisfy

28

Choosing specifications

•  There can be different specifications for the same
implementation!
–  Specification says more than implementation does
–  Declares which properties are essential – the

method itself leaves that ambiguous
–  Clients know what they can rely on, implementers

know what they are committed to
•  Which is better : a strong or a weak specification?

–  It depends!
–  Criteria: simple, promotes reuse & modularity,

efficient

29

Sneaky fringe benefit of specs #2

•  Specification means that client doesn't need to look
at implementation
–  So the code may not even exist yet!

•  Write specifications first, make sure system will fit
together, and then assign separate implementers to
different modules
–  Allows teamwork and parallel development
–  Also helps with testing, as we'll see shortly

30

