
GUI Event-Driven Programming

CSE 331

Software Design & Implementation

Slides contain content by Hal Perkins and Michael Hotan

1

Outline

User events and callbacks

Event objects

Event listeners

Registering listeners to handle events

Anonymous inner classes

Proper interaction between UI and program threads

2

Event-driven

programming

The main body of the program is an event loop.

Abstractly:

do {

e = getNextEvent();

process event e;

} while (e != quit);

3

Event-driven
programming

Event-driven programming:

A style of coding where a program's overall flow of execution is dictated

by events.

• The program loads, then waits for user input events.

• As each event occurs, the program runs particular code to respond.

• The overall flow of what code is executed is determined by the series

of events that occur

• Contrast with application- or algorithm-driven control where

program expects input data in a pre-determined order and timing

– Typical of large non-GUI applications like web crawling, payroll,

batch simulation

Graphical events

• event: An object that represents a user's interaction with a GUI

component; can be "handled" to create interactive components.

• listener: An object that waits for events and responds to them.

– To handle an event, attach a listener to a component.

– The listener will be notified when the event occurs (e.g. button

click).

Kinds of GUI events

• Mouse move/drag/click, mouse button press/release

• Keyboard: key press/release, sometimes with

modifiers like shift/control/alt/meta/cokebottle

• Touchscreen finger tap/drag

• Joystick, drawing tablet, other device inputs

• Window resize/minimize/restore/close

• Network activity or file I/O (start, done, error)

• Timer interrupt (including animations)

6

EventObject represents an event

• EventObject
– AWTEvent (AWT)

• ActionEvent

• TextEvent

• ComponentEvent
– FocusEvent

– WindowEvent

– InputEvent

• KeyEvent

• MouseEvent

Event objects contain information about the event

– UI object that triggered the event

– Other information depending on event. Examples:

ActionEvent – text string from a button

MouseEvent – mouse coordinates

import java.awt.event.*; An action that has occurred

on a GUI component

button/menu/

checkbox/text box/9

keyboard mouse

move/drag/

click/wheel

Action events

• action event: An action that has occurred on a GUI component.

– The most common, general event type in Swing. Caused by:

• button or menu clicks,

• check box checking / unchecking,

• pressing Enter in a text field, ...

– Represented by a class named ActionEvent

– Handled by objects that implement interface ActionListener

Handling events in Java Swing/AWT

GUI widgets can generate events (in response to button

clicks, menu picks, key press, etc.)

Handled using observer pattern.

Standard observer pattern:

– Object wishing to handle event is an Observer

– Object that generates events is an Observable

– Observer registers with the observable

– When an event happens, observable calls a
method (update) in each observer

• may notify multiple observers

9

Implementing a listener

public class MyClass implements ActionListener {

public void actionPerformed(ActionEvent event) {

code to handle the event;

}

}

JButton and other graphical components have this method:

/** Attaches the given listener to be notified of clicks and events that occur on

this component. */

public void addActionListener(ActionListener al)

EventListener type hierarchy

• EventListener

– AWTEventListener

– ActionListener has method actionPerformed()

– TextListener

– ComponentListener

– FocusListener

– WindowListener

– KeyListener has method keyPressed()

– MouseListener has method mouseClicked()

– MouseMotionListener has method mouseDragged()

When an event, occurs the appropriate method specified in the
interface is called

An event object is passed as a parameter to the event listener method

import java.awt.event.*;

JButton

a clickable region for causing actions to occur

• public JButton(String text)

Creates a new button with the given string as its text.

• public String getText()

Returns the text showing on the button.

• public void setText(String text)

Sets button's text to be the given string.

Example: button

Create a JButton and add it to a window

Create an object that implements ActionListener

(containing an actionPerformed method)

Add the listener object to the button’s listeners

ButtonDemo1.java

13

Which button is which?

Q: A single button listener often handles several

buttons. How to tell which is which?

A: an ActionEvent has a getActionEvent method

that returns (for a button) the “action command” string

Default is the button name, but usually better to set it

to a particular string that will remain the same inside

the program code even if the UI is changed or

translated. See button example.

Similar mechanisms to decode other events

14

Inner classes

• nested class: A class defined inside of another class.

– Two varieties: static nested class, and inner classes

• Usefulness:

– Inner classes are hidden from other classes (encapsulated).

– Inner objects can access/modify the fields of their outer object.

• Event listeners are often defined as nested classes inside a GUI.

Nested class syntax
// Enclosing outer class
public class OuterName {

...

// Instance nested class (= inner class)
// A different class for each instance of OuterName
private class InnerName {

...
}

// Static nested class
// One class, shared by all instances of OuterName
// (syntactic sugar for a top-level class)
static private class NestedStaticName { ... }

}

• If private, only the outer class can see the nested class or make objects of
it.

• Each inner object is associated with the outer object that created it, so it
can access/modify that outer object's methods/fields.

– If necessary, can refer to outer object as OuterName.this

Use-once classes

ButtonDemo1.java defines a class that is only used

once to create a listener for a single button

Could have been a top-level class, but in this

example it was an inner class since it wasn’t needed

elsewhere

But why a full-scale class when all we want is to

create a method to be called after a button click?

Solution: anonymous inner classes

17

Anonymous inner classes

Idea: define a new class directly in the new expression

that creates an object of the (new) anonymous inner class

Specify the base class to be extended or interface to be

implemented

Override or implement methods needed in the

anonymous class instance

Can have methods, fields, etc., but not constructors

But if it starts to get complex, use an ordinary class for

clarity (nested inner class if appropriate)

18

Anonymous class syntax

button.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e) {

model.doSomething()

}

}

);

Java 8 lambdas (function

closures) improve the syntax
19

Base class or interface being

extended (constructor

parameters ok if needed)

Brackets surrounding

new class definition

new expression to

create class instance

Implementation of method

for this anonymous class

Method call

parameter list

Example

ButtonDemo2.java

20

Program thread and UI thread

The program and user interface run in concurrent threads

All UI actions happen in the UI thread – even when they
execute callbacks to code like actionListener, etc.
defined in your program

After event handling and related work, you may call
repaint() if paintComponent() needs to run.

Do not try to draw anything from inside the event handler
itself (as in you must not do this!!!)

Remember that paintComponent must be able to do its
job by reading data that is available whenever the window
manager calls it

21

Event handling and repainting

22

program window manager (UI)

repaint()

paintComponent(g)

Remember: your program
and the window manager
are running concurrently:

• Program thread
• User Interface thread

It’s ok to call repaint
from an event handler,
but never call
paintComponent

yourself from either
thread.

actionPerformed(e)

Working in the UI thread

Event handlers usually should not do a lot of work

If the event handler does a lot of computing, the user

interface will appear to freeze up

If there’s lots to do, the event handler should set a

bit that the program thread will notice. Do the heavy

work back in the program thread.

(Don’t worry – finding a path for campus maps

should be fast enough to do in the UI thread)

23

Synchronization issues?

Yes, there can be synchronization problems

Not usually an issue in well-behaved programs, but can
happen if you work at it (deliberately or not)

Some advice:

Keep event handling short

Call repaint when data is ready, not when partially
updated

Don’t update data in the UI and program threads at
the same time (particularly for complex data)

Never ever call paintComponent directly

(Have we mentioned you should never call
paintComponent? And don’t create a new
Graphics object either.)

24

Larger example – bouncing balls

A hand-crafted MVC application. Origin is somewhere

back in the CSE142/3 mists. Illustrates how some

swing GUI components can be put to use.

Disclaimers:

Poor design

Unlikely to be directly appropriate for your project

Use it for ideas and inspiration, and feel free to steal

small bits if they really fit

Have fun!

25

