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Ways to get your design right

The hard way
Start hacking

When something doesn't work, hack some more
How do you know it doesn't work?

Need to reproduce the errors your users experience

Apply caffeine liberally

The easier way
Plan first (specs, system decomposition, tests, ...)

Less apparent progress upfront

Faster completion times

Better delivered product

Less frustration



Ways to verify your code

The hard way:  hacking
Make up some inputs

If it doesn't crash, ship it

When it fails in the field, attempt to debug

An easier way:  systematic testing
Reason about possible behaviors and desired outcomes

Construct simple tests that exercise all behaviors

Another way that can be easy:  reasoning
Prove that the system does what you want

Rep invariants are preserved

Implementation satisfies specification

Proof can be formal or informal (we will be informal)

Complementary to testing



Uses of reasoning

Goal:  correct code

• Verify that rep invariant is satisfied

• Verify that the implementation satisfies the 

spec

• Verify that client code behaves correctly

Assuming that the implementation is correct



Goal:  Demonstrate that rep invariant 

is satisfied
• Exhaustive testing

– Create every possible object of the type

– Check rep invariant for each object

– Problem:  impractical

• Limited testing

– Choose representative objects of the type

– Check rep invariant for each object

– Problem:  did you choose well?

• Reasoning

– Prove that all objects of the type satisfy the rep invariant

– Sometimes easier than testing, sometimes harder

– Every good programmer uses it as appropriate



All possible objects (and values) of a type

• Make a new object

– constructors

– producers

• Modify an existing object

– mutators

– observers, producers  (why?)

• Limited number of operations, but infinitely 
many objects

– Maybe infinitely many values as well



Examples of making objects

d = a.observer()c = a.mutator()b = producer(a)

a = constructor()

g = b.observer()f = b.mutator()e = producer(b)

Infinitely many possibilities

We cannot perform a proof that considers each possibility case-by-case



Solution:  induction

Induction:  technique for proving infinitely many 
facts using finitely many proof steps

For constructors (“basis step”)
Prove the property holds on exit

For all other methods (“inductive step”)
Prove that:

if the property holds on entry, then it holds on exit

If the basis and inductive steps are true:
There is no way to make an object for which the 

property does not hold

Therefore, the property holds for all objects



A counter class

// spec field: count

// abstract invariant:  count ≥ 0

class Counter {

// counts up starting from 0

Counter();

// returns a copy of this counter

Counter clone();

// increments the value that this represents:

// countpost = countpre + 1

void increment();

// returns count

BigInteger getValue();

}

Is the abstract invariant satisfied by these method specs?

Proof by contradiction:  where was the invariant first violated?



Inductive proof

• Base case:  invariant is satisfied by constructor

• Inductive case:

– If invariant is satisfied on entry to clone,
then invariant is satisfied on exit

– If invariant is satisfied on entry to increment,
then invariant is satisfied on exit

– If invariant is satisfied on entry to getValue,
then invariant is satisfied on exit

• Conclusion:  invariant is always satisfied



Inductive proof that  x+1 > x

ADT:  the natural numbers (non-negative integers)

– constructor:  0   (zero)

– producer:  succ (successor:  succ(x) = x+1)

– mutators:  none

– observers:  value

Axioms:

1. succ(0) > 0

2. (succ(i) > succ(j)) ⇔ i > j

Goal:  prove that for all natural numbers x,  succ(x) > x

Possibilities for x:

1. x is 0

• succ(0) > 0 axiom #1

2. x is succ(y) for some y

• succ(y) > y assumption

• succ(succ(y)) > succ(y) axiom #2

• succ(x) > x def of x = succ(y)



Outline for remainder of lecture

1. Prove that rep invariant is satisfied

2. Prove that client code behaves correctly

(Assuming that the implementation is correct)



CharSet abstraction

// Overview: A CharSet is a finite mutable set of chars.

// effects: creates a fresh, empty CharSet
public CharSet ( )

// modifies: this
// effects: thispost = thispre U {c}
public void insert (char c);

// modifies: this
// effects: thispost = thispre - {c}
public void delete (char c);

// returns: (c ∈ this)
public boolean member (char c);

// returns: cardinality of this

public int size ( );



Implementation of CharSet

// Rep invariant:  elts has no nulls and no duplicates
List<Character> elts;

public CharSet() {
elts = new ArrayList<Character>();

}
public void delete(char c) {

elts.remove(new Character (c));

}
public void insert(char c) {

if (! member(c)) 

elts.add(new Character(c));

}
public boolean member(char c) {

return elts.contains(new Character(c));

}
…



Proof of CharSet representation invariant

Rep invariant:  elts has no nulls and no duplicates

Base case:  constructor
public CharSet() {

elts = new ArrayList<Character>();

}

This satisfies the rep invariant

Inductive step:
For each other operation:

Assume rep invariant holds before the operation

Prove rep invariant holds after the operation



Inductive step,  member

Rep invariant:  elts has no nulls and no duplicates

public boolean member(char c) {

return elts.contains(new Character(c)); 

}

contains doesn’t change elts, so neither does member.

Conclusion:  rep invariant is preserved.

Why do we even need to check member?

After all, the specification says that it does not mutate set.

Reasoning must account for all possible arguments

It’s best not to involve the specific values in the proof



Inductive step,  delete

Rep invariant:  elts has no nulls and no duplicates

public void delete(char c) {

elts.remove(new Character(c));

}

List.remove has two behaviors:

– leaves elts unchanged, or

– removes an element.

Rep invariant can only be made false by adding elements.

Conclusion:  rep invariant is preserved.



Inductive step,  insert

Rep invariant:  elts has no nulls and no duplicates

public void insert(char c) {

if (! this.member(c))

elts.add(new Character(c));

}

If c ∈ eltspre:
elts is unchanged   ⇒ rep invariant is preserved

If c ∉ eltspre:
new element is not null or a duplicate  ⇒ rep invariant is preserved



Reasoning about mutations to the rep

Inductive step must consider all possible 

changes to the rep

A possible source of changes:  representation 

exposure

If the proof does not account for this, then the proof 

is invalid

An important reason to protect the rep:

Compiler can help verify that there are no external 

changes



Induction for reasoning about uses of ADTs

Induction on specification, not on code

Abstract values (e.g., specification fields) may differ 

from concrete representation

Can ignore observers, since they do not affect 

abstract state

How do we know that?

Axioms:

– specs of operations

– axioms of types used in overview parts of specifications



LetterSet (case-insensitive character set)
// A LetterSet is a mutable finite set of characters.

// No LetterSet contains two chars with the same lower-case representation.

// effects: creates an empty LetterSet

public LetterSet ( );

// Insert c if this contains no other char with same lower-case representation.

// modifies: this

// effects: this
post

= if (∃c1∈ this
pre

s.t.  toLowerCase(c1) = toLowerCase(c) )

//           then this
pre

//           else this
pre

U {c}

public void insert (char c);

// modifies: this

// effects: this
post

= this
pre

- {c}

public void delete (char c);

// returns:  (c ∈ this)

public boolean member (char c);

// returns:  |this|

public int size ( );



Goal:  prove that no LetterSet contains 

upper- and lower-case versions of a letter
Property P(X) = ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]

Consider an arbitrary LetterSet S

Prove P(S); that is:   ¬∃c1, c2 ∈S [toLowerCase(c1) = toLowerCase(c2)]

How might S have been made?

S
constructor

S
T.insert(c)

T

Base case

Inductive case (which itself has two subcases)

S
T.delete(c)

T Inductive case

Attempt #1



Goal:  prove no case-insentitive duplicates

Property P(X) = ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]

Prove P(S); that is:   ¬∃c1, c2 ∈S [toLowerCase(c1) = toLowerCase(c2)]

How might S have been made?

Consider two possibilities for how S was made:  by the constructor, or by insert

Base case: S = { }, (S was made by the constructor):

property holds (vacuously true)

Inductive case (S was made by a call of the form “T.insert(c)”):

Show: P(S), that is, ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]

where S = T.insert(c)

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c))
then T else T U {c}”

The value for S came from the specification of insert, applied to T.insert(c):

// modifies:  this

// effects:  this
post

= if (∃∃∃∃c1∈∈∈∈S s.t. toLowerCase(c1) = toLowerCase(c))

then this
pre

else this
pre
U {c}

public void insert (char c);

(Inductive case is continued on the next slide.)



Goal:  no case-insensitive duplicates.

Inductive case:  S = T.insert(c)
Goal (from previous slide):

Assume:  P(T), that is:   ¬¬¬¬∃∃∃∃c3, c4 ∈∈∈∈T [toLowerCase(c3) ==== toLowerCase(c4)]

Show: P(S), that is:   ¬∃c1, c2 ∈S [toLowerCase(c1) = toLowerCase(c2)]

where S = T.insert(c)

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c)) 

then T else T U {c}”

Consider the two possibilities for S (from “if ... then T else T U {c}”):

1. If S = T, then we have not introduced a duplicate (duh)

2. If S = T U {c}, then P(S) holds because of the if statement in the specification 

and the definition of union

Therefore, P(S) holds

and T had no duplicate to begin with



Goal:  prove that no LetterSet contains 

upper- and lower-case versions of a letter
Property P(X) = ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]

Prove P(S); that is:   ¬∃c1, c2 ∈S [toLowerCase(c1) = toLowerCase(c2)]

Use induction on the size of S.

How big is S?

Size 0

Size >0

Base case

Inductive case

Attempt #2



Goal:  prove no case-insensitive duplicates

Property P(X) = ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]

Prove P(S); that is:   ¬∃c1, c2 ∈S [toLowerCase(c1) = toLowerCase(c2)]

How might S have been made?

Consider three possibilities for how S was made:  by the constructor, or by 
insert, or by delete

Base case: S = { }, (S was made by the constructor):

property holds (vacuously true)

Inductive case (S was made by a call of the form “T.insert(c)”):

Assume: P(T) for all T such that |T| < |S|

Show: P(S), that is, ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]

Tricky because it’s possible that |T.insert(c)| = |T|

Inductive case (S was made by a call of the form “T.delete(c)”):

Assume: P(T) for all T such that |T| > |S|

Show: P(S), that is, ¬∃c1, c2 ∈X [toLowerCase(c1) = toLowerCase(c2)]



Proof by induction over the computation

Any LetterSet was constructed by a sequence of 

calls like this:

LetterSet().insert(c1).insert(c2). … .delete(c3).insert(c4)

Assume property holds for this object

Prove property holds for this object

Also prove the base case



Goal:  prove that a large enough LetterSet

contains two different letters
Property P(X) = |X| > 1 ⇒ (∃c1, c2 ∈X [toLowerCase(c1) ≠ toLowerCase(c2)]) 

Prove P(S); that is:   |S| > 1 ⇒ (∃c1, c2 ∈S [toLowerCase(c1) ≠ toLowerCase(c2)]) 

How might S have been made?

S
constructor

S
T.insert(c)

T

Base case

Inductive case

A new goal

(ignore delete(c) to keep the proof short)



Goal:  prove that a large enough LetterSet

contains two different letters
Property P(X) = |X| > 1 ⇒ (∃c1, c2 ∈X [toLowerCase(c1) ≠ toLowerCase(c2)]) 

Prove P(S)

Two possibilities for how S was made:  by the constructor, or by insert

Base case: S = { }, (S was made by the constructor):

property holds (vacuously true)

Inductive case (S was made by a call of the form “T.insert(c)”):

Assume: P(T), that is, |T| > 1 ⇒ (∃c3,c4∈T [toLowerCase(c3) ≠ toLowerCase(c4)])

Show: P(S), that is, |S| > 1 ⇒ (∃c1,c2 ∈S [toLowerCase(c1) ≠ toLowerCase(c2)])

where S = T.insert(c)

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c))
then T else T U {c}”

The value for S came from the specification of insert, applied to T.insert(c):

// modifies:  this

// effects:  this
post

= if (∃∃∃∃c1∈∈∈∈S s.t. toLowerCase(c1) = toLowerCase(c))

then this
pre

else this
pre
U {c}

public void insert (char c);

(Inductive case is continued on the next slide.)



Goal:  a large enough LetterSet contains two different letters.

Inductive case:  S = T.insert(c)
Goal (from previous slide):

Assume: P(T), that is, |T| > 1 ⇒ (∃c3,c4∈T [toLowerCase(c3) ≠ toLowerCase(c4)])

Show: P(S), that is, |S| > 1 ⇒ (∃c1, c2∈S [toLowerCase(c1) ≠ toLowerCase(c2)])

where S = T.insert(c)

= “if (∃c5∈T s.t. toLowerCase(c5) = toLowerCase(c)) 

then T else T U {c}”

Consider the two possibilities for S (from “if ... then T else T U {c}”):

1. If S = T, then P(S) holds by the induction hypothesis or assumption that P(T)

2. If S = T U {c}, there are three cases to consider:

– |T| = 0: P(S) holds vacuously, since hypothesis (“|S| > 1”) is false

– |T| ≥ 1: We know that T did not contain a char of toLowerCase(c),

so P(S) holds by the meaning of union

We didn’t need to use the induction hypothesis for this case

– Bonus:  |T| > 1: By inductive assumption, T contains different letters,

so by the meaning of union, T U {c} also contains different letters



Conclusion

The goal is correct code

A proof is a powerful mechanism for ensuring correctness

Formal reasoning is required if debugging is hard

Inductive proofs are the most effective in computer 

science

Types of proofs:

• Verify that rep invariant is satisfied (today)

• Verify that the implementation satisfies the spec 

(“reasoning about code” lectures)

• Verify that client code behaves correctly (today)


