
Design patterns (part 2)

CSE 331

University of Washington

Michael Ernst

Outline

�Introduction to design patterns

�Creational patterns (constructing objects)

⇒Structural patterns (controlling heap layout)

• Behavioral patterns (affecting object

semantics)

Structural patterns: Wrappers

A wrapper translates between incompatible interfaces

Wrappers are a thin veneer over an encapsulated class

modify the interface

extend behavior

restrict access

The encapsulated class does most of the work

Pattern Functionality Interface

Adapter same different

Decorator different same

Proxy same same

Adapter

Change an interface without changing

functionality

– rename a method

– convert units

– implement a method in terms of another

Example: angles passed in radians vs. degrees

Adapter example: scaling rectangles

Library:
interface Rectangle {

// grow or shrink this by the given factor

void scale(float factor);

...

float getWidth();

float area();

}

Client:
class myClass {

void myMethod(Rectangle r) {

... r.scale(2); ...

}

}

Goal: enable MyClass to use this library (without rewriting MyClass):

class NonScaleableRectangle { // not a Rectangle

void setWidth(float width) { ... }

void setHeight(float height) { ... }

// no scale method

...

}

Adapting scaled rectangles via subclassing

class ScaleableRectangle1 extends NonScaleableRectangle

implements Rectangle {

void scale(float factor) {

setWidth(factor * getWidth());

setHeight(factor * getHeight());

}

}

Adapting scaled rectangles via delegation

Delegation: forward requests to another object

class ScaleableRectangle2 implements Rectangle {
NonScaleableRectangle r;
ScaleableRectangle2(NonScaleableRectangle r) {

this.r = r;
}

void scale(float factor) {
r.setWidth(factor * r.getWidth());
r.setHeight(factor * r.getHeight());

}

float getWidth() { return r.getWidth(); }
float circumference() { return r.circumference(); }
...

}

Subclassing vs. delegation

Subclassing

– automatically gives access to all methods of superclass

– built in to the language (syntax, efficiency)

Delegation

– permits removal of methods (with compile-time checking)

– wrappers can be added and removed dynamically

– objects of arbitrary concrete classes can be wrapped

– multiple wrappers can be composed

Some wrappers have qualities of more than one of adapter, decorator, and
proxy

Delegation vs. composition

Differences are subtle

For CSE 331, consider them to be equivalent

Types of adapter

Client Implementation

Different
interfaces

Goal of adapter:

connect incompatible interfaces

Client ImplementationAdaptor

Adapter with delegation

Client

Implementation

Adaptor

Adapter with subclassing

Client

Implementation

Adaptor
Implementation

Subclass

Adapter with subclassing:

no extension is permitted

Decorator

Add functionality without changing the interface

Add to existing methods to do something

additional (while still preserving the previous

specification)

Not all subclassing is decoration

Decorator example: Bordered windows

interface Window {

// rectangle bounding the window

Rectangle bounds();

// draw this on the specified screen

void draw(Screen s);

...

}

class WindowImpl implements Window {

...

}

Bordered window implementations

Via subclasssing:
class BorderedWindow1 extends WindowImpl {

void draw(Screen s) {

super.draw(s);

bounds().draw(s);

}

}

Via delegation:
class BorderedWindow2 implements Window {

Window innerWindow;

BorderedWindow2(Window innerWindow) {

this.innerWindow = innerWindow;

}

void draw(Screen s) {

innerWindow.draw(s);

innerWindow.bounds().draw(s);

}

}

Delegation permits multiple

borders on a window, or a window

that is both bordered and shaded

(or either one of those)

A decorator can remove functionality

Remove functionality without changing the
interface

Example: UnmodifiableList

What does it do about methods like add and put?

Problem: UnmodifiableList is a Java subtype, but
not a true subtype, of List

Decoration can create a class with no Java subtyping
relationship, which is desirable

Proxy

Same interface and functionality as the wrapped class

Control access to other objects

– communication: manage network details when using a

remote object

– locking: serialize access by multiple clients

– security: permit access only if proper credentials

– creation: object might not yet exist (creation is

expensive)

hide latency when creating object

avoid work if object is never used

Composite pattern

• Composite permits a client to manipulate

either an atomic unit or a collection of units in

the same way

• Good for dealing with part-whole

relationships

Composite example: Bicycle

• Bicycle

– Wheel
• Skewer

– Lever

– Body

– Cam

– Rod

– Acorn nut

• Hub

• Spokes

• Nipples

• Rim

• Tape

• Tube

• Tire

– Frame

– Drivetrain

– ...

Methods on components

class BicycleComponent {
int weight();
float cost();

}
class Skewer extends BicycleComponent {
float price;
float cost() { return price; }

}
class Wheel extends BicycleComponent {
float assemblyCost;
Skewer skewer;
Hub hub;
...
float cost() {

return assemblyCost
+ skewer.cost()
+ hub.cost()
+ ...;

}
}

Composite example: Libraries

Library
Section (for a given genre)

Shelf

Volume

Page

Column

Word

Letter

interface Text {

String getText();

}

class Page implements Text {

String getText() {

... return the concatenation of the column texts ...

}

}

Next time: Traversing composites

Goal: perform operations on all parts of a

composite

