
Understanding an ADT implementation:

Abstraction functions

CSE 331

University of Washington

Michael Ernst

Review: Connecting specifications

and implementations

Representation invariant: Object → boolean

Indicates whether a data structure is well-formed

Only well-formed representations are meaningful

Defines the set of valid values of the data structure

Abstraction function: Object → abstract value

What the data structure means (as an abstract value)

How the data structure is to be interpreted

How do you compute the inverse, abstract value → Object ?

Abstraction function:

rep → abstract value

The abstraction function maps the concrete representation to

the abstract value it represents

AF: Object → abstract value

AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Typically not executable

The abstraction function lets us reason about behavior from the

client perspective

Abstraction function and insert impl.

Our real goal is to satisfy the specification of insert:

// modifies: this

// effects: thispost = thispre U {c}

public void insert (Character c);

The AF tells us what the rep means (and lets us place the blame)

AF(CharSet this) = { c | c is contained in this.elts }

Consider a call to insert:

On entry, the meaning is AF(thispre) ≈ eltspre

On exit, the meaning is AF(thispost) = AF(thispre) U {encrypt('a')}

What if we used this abstraction function?

AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }

Stack example
Stack rep:

int[] elements;

int top; // first unused index

0 0 0

17 0 0

T
o
p
=
1

17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <17>

stack = <17,-9>

17 -9 0

stack = <17>
T
o
p
=
1

Abstract states are the same

stack = <17> = <17>

Concrete states are different

<[17,0,0], top=1>

≠

<[17,-9,0], top=1>

AF is a function

AF-1 is not a function

new Stack()

push(17)

push(-9)

pop()

stack = <>

Benevolent side effects

Different implementation of member:
boolean member(Character c1) {

int i = elts.indexOf(c1);

if (i == -1)

return false;

// move-to-front optimization

Character c2 = elts.elementAt(0);

elts.set(0, c1);

elts.set(i, c2);

return true;

}

Move-to-front speeds up repeated membership tests
Mutates rep, but does not change abstract value

AF maps both reps to the same abstract value

Example: AF() = { a, c, i, n, o, t, u } = AF()

Example: AF() = { b, h, r, s, u } = AF()

r r’

a

op

 ⇒

AF AF

s h r u b b r u s h

a u c t i o n c a u t i o n

Creating the concrete object:

• Establishes the rep invariant

• Establishes the abstraction function

Every operation:

• Maintains the rep invariant

• Maintains the abstraction function

Why is each of these properties important?

The abstraction function:

concrete → abstract

Q: Why do we map concrete to abstract rather

than vice versa?

1. It’s not a function in the other direction.

E.g., lists [a,b] and [b,a] each represent the set {a, b}

2. It’s not as useful in the other direction.

Can construct objects via the provided operators

Writing an abstraction function

The domain: all representations that satisfy the rep
invariant

The range: can be tricky to denote

For mathematical entities like sets: easy

For more complex abstractions: give them fields

AF defines the value of each “specification field”

For “derived specification fields”, see the handouts

The overview section of the specification should
provide a way of writing abstract values

A printed representation is valuable for debugging

ADTs and Java language features

• Java classes
– Make operations in the ADT public

– Make other operationss and fields of the class private

– Clients can only access ADT operations

• Java interfaces
– Clients only see the ADT, not the implementation

– Multiple implementations have no code in common

– Cannot include creators (constructors) or fields

• Both classes and interfaces are sometimes
appropriate
– Write and rely upon careful specifications

– Prefer interface types instead of specific classes in
declarations (e.g., List instead of ArrayList for
variables and parameters)

Implementing an ADT: Summary

Rep invariant
Which concrete values represent abstract values

Abstraction function
For each concrete value, which abstract value it represents

Together, they modularize the implementation
Can examine operators one at a time

Neither one is part of the abstraction (the ADT)

In practice
Always write a representation invariant

Write an abstraction function when you need it
Write an informal one for most non-trivial classes

A formal one is harder to write and often less useful

A half-step backwards

• Why focus so much on invariants (properties of code
that do not – or are not supposed to – change)?

• Why focus so much on immutability (a specific kind of
invariant)?

• Software is complex – invariants/immutability reduce
the intellectual complexity

• If we can assume some property remains unchanged,
we can consider other properties instead

• Reducing what we need to think about can be a huge
benefit

