
Implementing an ADT:

Representation invariants

CSE 331

University of Washington

Michael Ernst

A data abstraction is defined by a

specification

An ADT is a collection of procedural abstractions
Not a collection of procedures

Together, these procedural abstractions provide:
A set of values

All the ways of directly using that set of values
Creating

Manipulating

Observing

Creators and producers: make new values

Mutators: change the value (but don’t affect ==)

Observers: allow one to tell values apart

ADTs and specifications

Specification: only in terms of the abstraction

Never mentions the representation

An ADT is more than just a data structure

data structure + a set of conventions

Why do we need to relate the specification to

the representation?

Connecting specifications and

implementations

Representation invariant: Object → boolean

Indicates whether a data structure is well-formed

Only well-formed representations are meaningful

Defines the set of valid values of the data structure

Abstraction function: Object → abstract value

What the data structure means (as an abstract value)

How the data structure is to be interpreted

How do you compute the inverse, abstract value → Object ?

Implementation of an ADT

is provided by a class

To implement a data abstraction:

– Select the representation of instances, the rep

– Implement operations in terms of that rep

Choose a representation so that

– It is possible to implement operations

– The most frequently used operations are efficient

• But which will these be?

• Abstraction allows the rep to change later

CharSet Abstraction
// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet

public CharSet ()

// modifies: this

// effects: thispost = thispre U {c}

public void insert (Character c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c ∈ this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

A CharSet implementation.

What client code will expose the error?

class CharSet {
private List<Character> elts

= new ArrayList<Character>();

public void insert(Character c) {
elts.add(c);

}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();

s.insert('a');

s.insert('a');

s.delete('a');

if (s.member('a'))

// print “wrong”;

else

// print “right”;Where is the error?

Where Is the Error?

The answer to this question tells you what

needs to be fixed

Perhaps delete is wrong

It should remove all occurrences

Perhaps insert is wrong

It should not insert a character that is already there

How can we know?

The representation invariant tells us

The representation invariant

• States data structure well-formedness

• Holds before and after every CharSet operation

• Operation implementations (methods) may depend on it

Write it this way:

class CharSet {

// Rep invariant: elts has no nulls and no duplicates

private List<Character> elts;

(

Or, if you are the pedantic sort:
∀∀∀∀ indices i of elts . elts.elementAt(i) ≠ null

∀∀∀∀ indices i, j of elts .

i ≠ j ⇒ ¬ elts.elementAt(i).equals(elts.elementAt(j))

Now, we can locate the error

// Rep invariant:

// elts has no nulls and no duplicates

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}

Another rep invariant example

class Account {

private int balance;

// history of all transactions

private List<Transaction> transactions;

…

}

// real-world constraints:

balance ≥ 0

balance = Σi transactions.get(i).amount

// implementation-related constraints:

transactions ≠ null

no nulls in transactions

Listing the elements of a CharSet

Consider adding the following method to CharSet:

// returns: a List containing the members of this

public List<Character> getElts();

Consider this implementation:
// Rep invariant: elts has no nulls and no duplicates

public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the

rep invariant?

… sort of

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();

s.insert('a');

s.getElts().add('a');

s.delete('a');

if (s.member('a')) …

Representation exposure is external access to the rep

Representation exposure is almost always EVIL

Enables violation of abstraction boundaries and the rep invariant

If you do it, document why and how
And feel guilty about it!

How can we avoid/prevent rep exposure?

Ways to avoid rep exposure
1. Exploit immutability

Character choose() {

return elts.elementAt(0);

}

Character is immutable.

2. Make a copy

List<Character> getElts() {

return new ArrayList<Character>(elts);

// or: return (ArrayList<Character>) elts.clone();

}

Mutating a copy doesn’t affect the original.

Don’t forget to make a copy on the way in!

3. Make an immutable copy

List<Character> getElts() {

return Collections.unmodifiableList<Character>(elts);

}

Client cannot mutate

Still need to make a copy on the way in

Defining fields as private

is not sufficient

to hide the representation

Checking rep invariants

Should code check that the rep invariant holds?

– Yes, if it’s inexpensive

– Yes, for debugging (even when it’s expensive)

– It’s quite hard to justify turning the checking off

– Some private methods need not check (Why?)

Checking the rep invariant

Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {

checkRep();

elts.remove(c)

// Is this guaranteed to get called?

// See handouts for a less error-prone way to check at exit.

checkRep();

}

…

/** Verify that elts contains no duplicates. */

private void checkRep() {

for (int i = 0; i < elts.size(); i++) {

assert elts.indexOf(elts.elementAt(i)) == i;

}

}

Practice defensive programming

Assume that you will make mistakes

Write and incorporate code designed to catch them
On entry:

Check rep invariant

Check preconditions (requires clause)

On exit:
Check rep invariant

Check postconditions

Checking the rep invariant helps you discover errors

Reasoning about the rep invariant helps you avoid errors
Or prove that they do not exist!

We will discuss such reasoning, later in the term

The rep invariant constrains structure,

not meaning

New implementation of insert that preserves the rep invariant:
public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

elts.addElement(cc);

}

public boolean member(Character c) {

return elts.contains(c);

}

The program is still wrong
Clients observe incorrect behavior

What client code exposes the error?

Where is the error?

We must consider the meaning

The abstraction function helps us

CharSet s = new CharSet();

s.insert('a');

if (s.member('a'))

// print “right”;

else

// print “wrong”;

