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Reasoning about loops

A loop represents an unknown number of paths

Case analysis is problematic

Recursion presents the same problem as loops

Cannot enumerate all paths

This is what makes testing and reasoning hard

Things to prove about a loop:

1. It computes the correct value

2. It terminates (no infinite loop)



Reasoning about loops:

values and termination
// assert x ≥≥≥≥ 0 & y = 0
while (x != y) {

y = y + 1;
}

// assert x = y

Does “x=y” hold after this loop?
Does this loop terminate?
1) Pre-assertion guarantees that x ≥ y
2) Every time through loop

x ≥ y holds at the test – and if body is entered, x > y
y is incremented by 1
x is unchanged
Therefore, y is closer to x   (but x ≥ y still holds)

3) Since there are only a finite number of integers between x and y, y 
will eventually equal x

4) Execution exits the loop as soon as x = y  (but x ≥ y still holds)



Understanding loops by induction

We just made an inductive argument
Inducting over the number of iterations

Computation induction
Show that conjecture holds if zero iterations

Show that it holds after n+1 iterations
(assuming that it holds after n iterations)

Two things to prove
1. Some property is preserved (known as “partial correctness”),

if the code terminates
Loop invariant is preserved by each iteration, if the iteration completes

2. The loop completes (known as “termination”)
The “decrementing function” is reduced by each iteration

and cannot be reduced forever



How to choose a loop invariant, LI

{ P }
while (b) S;

{ Q }

Find an invariant, LI, such that
1. P ⇒ LI // true initially

2. { LI & b } S { LI }        // true if the loop executes once

3. (LI & ¬b) ⇒ Q          // establishes the postcondition

Finding the invariant is the key to reasoning about loops

Fact: For any loop and pre/post conditions it satisfies, there 
exists a loop invariant sufficient to prove them
(Equivalently:  inductive assertions is a “complete method of 

proof”)

(We will not yet prove loop termination; it is sufficient to 
know that if loop terminates, Q will hold.)



Loop invariant for the example

// assert x ≥≥≥≥ 0 & y = 0
while (x != y) {

y = y + 1;
}

// assert x = y

A suitable invariant:

LI = x ≥ y

1. x ≥ 0  &  y = 0 ⇒ LI          // true initially

2. { LI &  x ≠ y } y = y+1; { LI } // true if the loop executes once

3. (LI &  ¬(x ≠ y))   ⇒ x = y    // establishes the postcondition



Termination

Total correctness = partial correctness + termination

We have not established that the loop terminates

Suppose that the loop always reduces some variable’s 
value.  Does the loop terminate if the variable is a
– Natural number?

– Integer?

– Non-negative real number?

– Boolean?

– ArrayList?

The loop terminates if:

• each variable value maps to a natural number, and

• the number decreases on each iteration

via reduction to natural numbers



Well-ordered sets

We don’t have to use the natural numbers

The loop terminates if the variable values are, or 

can be mapped to, (a subset of) a well-

ordered set

– Ordered set

– Every non-empty subset has a least element

The natural numbers are the best choice



Decrementing function

Decrementing function D(X)
Maps state (program variables) to a natural number

Consider:  while (b) S;

We seek D(X), where X is the state, such that
1. An execution of the loop reduces the function’s 

value:
{ LI & b }  S { D(Xpost) < D(Xpre) }

2. If the function’s value is minimal, the loop 
terminates:
(LI  &  D(X) = 0)  ⇒ ¬b



Proving termination

// assert x ≥ 0 & y = 0

// Loop invariant: x ≥ y

// Loop decrements:  (x-y)
while (x != y) {

y = y + 1;
}

// assert x = y

Is this a good decrementing function?

1. Does the loop reduce the decrementing function’s value?

// assert (y ≠ x); let dpre = (x-y)
y = y + 1;
// assert (xpost – ypost) < dpre

2. If the function has minimum value, does the loop exit?

(x ≥ y & x - y = 0) ⇒ (x = y)



Choosing loop invariants

For non-looping code, the wp (weakest precondition) function 
enables proofs

For loops, you have to guess:
The loop invariant

The decrementing function

Then, use reasoning techniques to prove the goal property

If the proof doesn't work:
Maybe you chose a bad invariant or decrementing function

Choose another and try again

Maybe the loop is incorrect
Fix the code

Automatically choosing loop invariants is a research topic



When to use code proofs for loops

Most of your loops need no proofs
for (String name : friends) { ... }

When you are unsure about a loop,

write loop invariants and decrementing functions

If a loop is not working:

Add invariant and decrementing function if missing

Write code to check them

Understand why the code doesn't work

Reason to ensure that no similar bugs remain



Example:  Factorial

{ n≥0 ∧ t=n }

r=1;

while (n≠0) {

r=r*n;

n=n-1;

}

{ r=t! }

n≥0 ∧ t=n ∧ r=1

r=t!/n! ∧ t≥n≥0

r=t!/(n-1)! ∧ t≥n>0

r=t!/n! ∧ t≥n≥0



Example:  Quotient and remainder

r := x;

q := 0;

while (y <= r) {

r := r – y;

q := 1 + q;

}

{ x = r + y × q and y > r }

x = r + y × 0

x = r + y × q

x = x + y × 0



Example:  Greatest common divisor

{ x1 > 0  ∧ x2 > 0 }

y1:=x1;

y2:=x2;

while (y1≠y2) do

if  y1>y2

then y1 := y1-y2

else y2 := y2-y1

{ y1 = gcd(x1,x2) }

Recall:  if y1,y2 are both positive integers, then:

• If y1>y2 then gcd(y1,y2)=gcd(y1-y2,y2)

• If y2>y1 then gcd(y1,y2)=gcd(y1,y2-y1)

• If y1-y2 then gcd(y1,y2)=y1=y2



Invariants help you write code 

as well as prove it correct

Dutch National Flag problem:

Given an array containing balls of three 

colors, arrange them with like colors 

together and in the right order

• Precondition:

• Postcondition:

• Loop invariant:

Red

Mixed colors:  red, white, blue

White Blue

Red White Blue Mixed

Red White BlueMixed

Edsgar Dijkstra


