001package hw4.problem1; 002 003 004/** 005 * IntQueue2 is our second implementation of a basic first-in, first-out queue 006 * for Integers. 007 * <p> 008 * 009 * An IntQueue can be described as [n1, n2, ..., n_k], where n1 is the 010 * least-recently-added item in the queue and is the next item to be 011 * removed. n_k is the most-recently-added and will be the last of the 012 * current elements to be removed. 013 * <p> 014 * 015 * An IntQueue can also be described constructively, with the append operation, 016 * ':', such that [n1, n2, ..., n_k] : n_k+1 is the result of enqueing n_k+1 017 * at the end of the queue. 018 * 019 * @author Krysta Yousoufian 020 */ 021public class IntQueue2 { 022 // This class represents a queue as a circular ring buffer. An array 023 // stores the values in the queue. Because the number of elements 024 // currently in the queue is usually less than the size of the 025 // array, we store the index of the first item in the queue and the 026 // total number of elements in the queue. For example, a queue with 4 027 // items might look like this: 028 // 029 // [__ __ n1 n2 n3 n4 __ __] 030 // ^front ^front+size-1 031 // 032 // As items are enqueued, front remains unchanged while size is 033 // incremented. As items are dequeued, front is incremented and size 034 // is decremented. 035 036 // Normally, your abstraction function and representation invarant would go 037 // here. For ease of grading, please place them in hw4/answers/problem1.txt 038 // instead with your answers to the other written exercises. 039 040 // Starting size for the array 041 private static final int INITIAL_SIZE = 20; 042 043 int[] entries; 044 int front; 045 int size; 046 047 /** 048 * @effects constructs an empty queue 049 */ 050 public IntQueue2() { 051 entries = new int[INITIAL_SIZE]; 052 front = 0; 053 size = 0; 054 checkRep(); 055 } 056 057 /** 058 * Enqueue an item 059 * @param entry item to be added to the queue 060 * @modifies this 061 * @effects places entry at the end of the queue 062 */ 063 public void enqueue(Integer entry) { 064 // Enlarge queue if necessary 065 if (size == entries.length) { 066 int[] newEntries = new int[entries.length * 2]; 067 for (int i = 0; i < size; i++) { 068 newEntries[i] = entries[(front+i)%entries.length]; 069 } 070 entries = newEntries; 071 front = 0; 072 } 073 074 // Add item to the end of the queue, wrapping around to the front if necessary 075 entries[(front+size)%entries.length] = entry; 076 size++; 077 078 checkRep(); 079 } 080 081 /** 082 * Dequeue an item 083 * @requires size() > 0 084 * @modifies this 085 * @effects removes the item at the front of the queue 086 * @return the item that was first in the queue 087 */ 088 public Integer dequeue() { 089 Integer ret = entries[front]; 090 size--; 091 front = (front+1) % entries.length; 092 return ret; 093 } 094 095 /** 096 * See the next item without removing it 097 * @requires size() > 0 098 * @return the item currently first in the queue 099 */ 100 public Integer front() { 101 return entries[front]; 102 } 103 104 /** 105 * 106 * @return number of elements in the queue 107 */ 108 public int size() { 109 return size; 110 } 111 112 /** 113 * 114 * @return size() == 0 115 */ 116 public boolean isEmpty() { 117 return size == 0; 118 } 119 120 public void checkRep() { 121 // If I gave this to you, you wouldn't have the fun of figuring out the 122 // rep invariant for yourself :) 123 } 124}