Section 7: Dijkstra's

Slides by Alex Mariakakis
with material Kellen Donohue, David Mailhot, and Dan Grossman

Agenda

- Happy Halloween!!!
- HW 6 questions
- BFS and weighted edges
- Dijkstra's Algorithm

Homework 7

- Modify your graph to use generics
- Change your HW \#5 code where it is now
- Will have to update HW \#5 and HW \#6 tests
- Implement Dijkstra's algorithm
- Search algorithm that accounts for edge weights
- Note: This should not change your implementation of Graph. Dijkstra's is performed on a Graph, not within a Graph.

Review: Shortest Paths with BFS

Shortest Paths with Weights

BFS vs. Dijkstra's

- BFS doesn't work because path with minimal cost \neq path with fewest edges
- Dijkstra's works if the weights are non-negative
- What happens if there is a negative edge?
- Minimize cost by repeating the cycle forever
- Anyone have a simple solution?

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency

Dijkstra's Algorithm

1. For each node v, set $v . \operatorname{cost}=\infty$ and v. known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark vas known
c) For each edge (v, u) with weight w ,

$$
\begin{array}{rlr}
c 1=v \cdot \operatorname{cost}+w & & / / \text { cost of best path through } v \text { to } u \\
c 2=u \cdot c o s t & & \text { // cost of best path to u previously known } \\
\text { if }(c 1<c 2) & & \text { // if the new path through } v \text { is better, update } \\
& \text { u.cost }=c 1 &
\end{array}
$$

Order Added to Known Set:

vertex	known?	cost	path
A	Y	0	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	
H		∞	

Order Added to Known Set:
A
vertex
known?
B cost
C
D
E
F
G
H

	010	\#1		
4 (E)	vertex	known?	cost	path
	A	Y	0	
	B		≤ 2	A
	C	Y	1	A
Order Added to Known Set:	D		≤ 4	A
	E		≤ 12	C
A, C	F		∞	
	G		∞	
	H		∞	

Example \#1

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D		≤ 4	A
E		≤ 12	C
F		≤ 4	B
G		∞	
H		∞	

A, C, B

Example \#1

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E		≤ 12	C
F		≤ 4	B
G		∞	
H		∞	

A, C, B, D

Example \#1

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E		≤ 12	C
F	Y	4	B
G		∞	
H		≤ 7	F

Example \#1

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E		≤ 12	C
F	Y	4	B
G		≤ 8	H
H	Y	7	F

A, C, B, D, F, H

Example \#1

Order Added to Known Set:
A, C, B, D, F, H, G

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E		≤ 11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#1

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

A, C, B, D, F, H, G, E

Interpreting the Results

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Note: this is a shortest path tree, not a minimum spanning tree

Order Added to Known Set:

vertex	known?	cost	path
A	Y	0	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Order Added to Known Set:
A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Pseudocode Attempt \#1

dijkstra(Graph G, Node start) \{

brackets...

Can We Do Better?

- Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices
- PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO

Priority Queue

- Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices
- PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO
- Two ways to implement:

1. Comparable
a) class Node implements Comparable<Node>
b) public int compareTo(other)
2. Comparator
a) Class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

Pseudocode Attempt \#2

dijkstra (Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false start.cost = 0
build-heap with all nodes
while (heap is not empty) \{
b = deleteMin()
if (b.known) continue;
b. known = true
for each edge (b,a) in G \{
if(!a.known) \{ add(b.cost + weight((b,a))) \}
brackets...

O(|E|log|V|)

Proof of Correctness

- All the "known" vertices have the correct shortest path through induction
- Initially, shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known" with shortes path
- Key fact: When we mark a vertex "known" we won't discover a shorter path later
- Remember, we pick the node with the min cost each round
- Once a node is marked as "known", going through another path will only add weight
- Only true when node weights are positive

