Section 7:
Dijkstra’s

Slides by Alex Mariakakis

with material Kellen Donohue, David
Mailhot, and Dan Grossman

Agenda

Happy Halloweenll!!

HW 6 questions

BFS and weighted edges
Dijkstra’s Algorithm

Homework 7

* Modify your graph to use generics
o Change your HW #5 code where it is now
o Will have to update HW #5 and HW #6 tests

* Implement Dijkstra’s algorithm
o Search algorithm that accounts for edge weights

o Note: This should not change your implementation of
Graph. Dijkstra’s is performed on a Graph, not within a
Graph.

Review: Shortest Paths with BFS

From Node B

Destination Path Cost

B 0

D <B,D> 1

Shortest Paths with Weights

From Node B

Destination Path Cost

B 0

D <B,A,C,D> 7

Paths are not the samel

BES vs. Dijkstra’s

100 100
100 100

500

BFS doesn’t work because path with minimal cost # path
with fewest edges

Dijkstra’s works if the weights are non-negative

What happens if there is a negative edgee
o Minimize cost by repeating the cycle forever
o Anyone have a simple solutione

Dijkstra’s Algorithm

 Named after its inventor Edsger Dikstra (1930-2002)

o Truly one of the “founders” of computer science;
this is just one of his many contributions

 The idea: reminiscent of BFS, but adapted to handle
weights
o Grow the set of nodes whose shortest distance has been
computed
o Nodes not in the set will have a "best distance so far”

o A priority queue will furn out to be useful for efficiency

Dijkstra’s Algorithm

For each node v, set v.cost = « and v.known =
false

Set source.cost = 0

While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v, u) with weight w,

cl = v.cost + w // cost of best path through v to u

C2 = u.cost // cost of best path to u previously known

if(cl < c2) // if the new path through v is better, update
u.cost = cl

u.path = v

T

Example #1
0 1"\(; , ¥ W
A B 3 (H
1
1
4 d 5 10 e
v C M
]
2 E vertex | known? cost path
7 % A Y 0

Order Added to Known Set:

T OQMMOO|W

Order Added to Known Set:

o

Example #1
¥ ¥
2 3 .
10 I
G)Y
E vertex | known? cost path
A Y 0
<2 A
<1 A
<4 A

A

T OQMMOO|W

A C

0 2 , W ; "
A B »(H
1
5 \10 1
4 9 : S\
y C
D 1
E % vertex | known? cost path
/ A Y 0
<2 A
Y 1 A
<4 A
Order Added to Known Set:
<12 C

T OQMMOO|W

A CB

Example #1
0 2 4 W
A B)——(F)——(H
1 2 1
4{' 9 C51 10 X
D 1 E vertex | known? cost path
U 12 A Y 0
B Y 2 A
C Y 1 A
D <4 A
Order Added to Known Set:
E <12 C
F <4 B
G
H

A CB,D

Example #1
0 2 4 W
A B)——(F)——(H
1 2 1
4{' 9 C51 10 X
2 1 E vertex | known? cost path
y 12 A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set:
E <12 C
F <4 B
G
H

Order Added to Known Set:

A CB,D,F

known? cost path

Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G 00
H <7 F

Order Added to Known Set:

A CB,D,FH

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G <8 H
H Y 7 F

Order Added to Known Set:

A CB,D,FHG

known? cost path
Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

known?

cost

path

A CB,DFHGE

T OQMMOO|W

<|=<|=<|=<|=<|=<|=<

M| IT[(@|OI>|>(>

Interpretmg the Results

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Nofe: this is a shortest path
tree, not a minimum spanning

tfree

O g Example #2

M

M

Order Added to Known Set:

W

vertex

known?

cost

path

QMM |

Order Added to Known Set:

A D,CERB,FG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

Pseudocode Attempt #1

dijkstra (Graph G, Node start) {
for each node: x.cost=infinity, X.known=false:+_(xlvn
start.cost = 0
while (not all nodes are known) {
b = dequeue o(|V]2)
b.known = true
for each edge (b,a) in G {
if('a.known) {
1f(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight ((b,a))
a.path = Db

O(lE[)

J o(|V|2)
brackets..

Can We Do Better?

* |Increase efficiency by considering lowest cost
unknown vertex with sorting instead of looking at all
vertices

* PriorityQueue is like a queue, but returns elements
by lowest value instead of FIFO

Priority Queue

* |Increase efficiency by considering lowest cost
unknown vertex with sorting instead of looking at all
vertices

* PriorityQueue is like a queue, but returns elements
by lowest value instead of FIFO

« Two ways to implement:

1.

Comparable

a) class Node implements Comparable<Node>

b) public int compareTo(other)

Comparator

a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

Pseudocode Attempt #2

dijkstra (Graph G, Node start) {
for each node:

X.cost=infinity,

start.cost = 0
build-heap with all nodes
while (heap is not empty) ({

b = deleteMin ()
1f (b.known) continue;
b.known = true

for each edge (b,a) in G {
if (!'a.known) {
add (b.cost + weight ((b,a))
}

brackets..

xX.known=false o(|V|)

O(|V]log|V])

O(|E|log|V])

)

O(|E|log|V])

Proof of Correctness

o All the “known” vertices have the correct shortest
path through induction
o Initially, shortest path to start node has cost O
o If it stays true every fime we mark a node “known”, then by
induction this holds and eventually everything is “known”
with shortes path
« Key fact: When we mark a vertex “known” we
won't discover a shorter path later

o Remember, we pick the node with the min cost each
round

o Once a node is marked as “known”, going through
another path will only add weight

o Only true when node weights are positive

