# Section 7: Dijkstra's

Slides by Alex Mariakakis

with material Kellen Donohue, David Mailhot, and Dan Grossman

### Agenda

- Happy Halloween!!!
- HW 6 questions
- BFS and weighted edges
- Dijkstra's Algorithm

#### Homework 7

- Modify your graph to use generics
  - Change your HW #5 code where it is now
  - Will have to update HW #5 and HW #6 tests
- Implement Dijkstra's algorithm
  - Search algorithm that accounts for edge weights
  - Note: This should not change your implementation of Graph. Dijkstra's is performed on a Graph, not within a Graph.

#### Review: Shortest Paths with BFS



#### From Node B

| Destination | Path            | Cost |
|-------------|-----------------|------|
| A           | <b,a></b,a>     | 1    |
| В           | <b></b>         | 0    |
| С           | <b,a,c></b,a,c> | 2    |
| D           | <b,d></b,d>     | 1    |
| Е           | <b,d,e></b,d,e> | 2    |

### Shortest Paths with Weights



From Node B

| Destination | Path                | Cost |
|-------------|---------------------|------|
| A           | <b,a></b,a>         | 2    |
| В           | <b></b>             | 0    |
| С           | <b,a,c></b,a,c>     | 5    |
| D           | <b,a,c,d></b,a,c,d> | 7    |
| Е           | <b,a,c,e></b,a,c,e> | 7    |

Paths are not the same!

### BFS vs. Dijkstra's



- BFS doesn't work because path with minimal cost ≠ path with fewest edges
- Dijkstra's works if the weights are non-negative
- What happens if there is a negative edge?
  - Minimize cost by repeating the cycle forever
  - o Anyone have a simple solution?

### Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
  - Truly one of the "founders" of computer science;
     this is just one of his many contributions
- The idea: reminiscent of BFS, but adapted to handle weights
  - Grow the set of nodes whose shortest distance has been computed
  - Nodes not in the set will have a "best distance so far"
  - A priority queue will turn out to be useful for efficiency

### Dijkstra's Algorithm

- For each node v, set v.cost = ∞ and v.known = false
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
  - a) Select the unknown node v with lowest cost
  - b) Mark v as known
  - c) For each edge (v, u) with weight w,



Order Added to Known Set:

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      |        | 8    |      |
| С      |        | 8    |      |
| D      |        | 8    |      |
| Е      |        | 8    |      |
| F      |        | 8    |      |
| G      |        | 8    |      |
| Н      |        | 8    |      |



#### Order Added to Known Set:

Α

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      |        | ≤ 2  | Α    |
| С      |        | ≤ 1  | Α    |
| D      |        | ≤ 4  | Α    |
| Е      |        | 8    |      |
| F      |        | 8    |      |
| G      |        | 8    |      |
| Н      |        | 8    |      |



#### Order Added to Known Set:

A, C

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      |        | ≤ 2  | Α    |
| С      | Υ      | 1    | Α    |
| D      |        | ≤ 4  | Α    |
| Е      |        | ≤ 12 | С    |
| F      |        | 8    |      |
| G      |        | 8    |      |
| Н      |        | 8    |      |



#### Order Added to Known Set:

A, C, B

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      | Y      | 2    | Α    |
| С      | Y      | 1    | Α    |
| D      |        | ≤ 4  | Α    |
| Е      |        | ≤ 12 | С    |
| F      |        | ≤ 4  | В    |
| G      |        | 8    |      |
| Н      |        | 8    |      |



#### Order Added to Known Set:

A, C, B, D

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      | Y      | 2    | Α    |
| С      | Y      | 1    | Α    |
| D      | Y      | 4    | Α    |
| Е      |        | ≤ 12 | С    |
| F      |        | ≤ 4  | В    |
| G      |        | 8    |      |
| Н      |        | 8    |      |



#### Order Added to Known Set:

A, C, B, D, F

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      | Y      | 2    | Α    |
| С      | Y      | 1    | Α    |
| D      | Y      | 4    | Α    |
| Е      |        | ≤ 12 | С    |
| F      | Y      | 4    | В    |
| G      |        | 8    |      |
| Н      |        | ≤ 7  | F    |



#### Order Added to Known Set:

A, C, B, D, F, H

| vertex | known? | cost | path |
|--------|--------|------|------|
| А      | Y      | 0    |      |
| В      | Y      | 2    | Α    |
| С      | Y      | 1    | Α    |
| D      | Y      | 4    | Α    |
| Е      |        | ≤ 12 | С    |
| F      | Y      | 4    | В    |
| G      |        | ≤8   | Η    |
| Н      | Y      | 7    | F    |



#### Order Added to Known Set:

A, C, B, D, F, H, G

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      | Y      | 2    | Α    |
| С      | Υ      | 1    | Α    |
| D      | Y      | 4    | Α    |
| Е      |        | ≤ 11 | G    |
| F      | Y      | 4    | В    |
| G      | Υ      | 8    | Н    |
| Н      | Y      | 7    | F    |



#### Order Added to Known Set:

A, C, B, D, F, H, G, E

| vertex | known? | cost | path |
|--------|--------|------|------|
| А      | Y      | 0    |      |
| В      | Y      | 2    | Α    |
| С      | Y      | 1    | Α    |
| D      | Y      | 4    | Α    |
| Е      | Y      | 11   | G    |
| F      | Y      | 4    | В    |
| G      | Y      | 8    | Η    |
| Н      | Y      | 7    | F    |

### Interpreting the Results





| _      |        |      |      |
|--------|--------|------|------|
| vertex | known? | cost | path |
| Α      | Υ      | 0    |      |
| В      | Υ      | 2    | Α    |
| С      | Υ      | 1    | Α    |
| D      | Y      | 4    | Α    |
| Е      | Υ      | 11   | G    |
| F      | Υ      | 4    | В    |
| G      | Υ      | 8    | Н    |
| Н      | Υ      | 7    | F    |

Note: this is a shortest path tree, <u>not</u> a minimum spanning tree



#### Order Added to Known Set:

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      |        | 8    |      |
| С      |        | 8    |      |
| D      |        | 8    |      |
| E      |        | 8    |      |
| F      |        | ∞    |      |
| G      |        | 8    |      |



#### Order Added to Known Set:

A, D, C, E, B, F, G

| vertex | known? | cost | path |
|--------|--------|------|------|
| Α      | Y      | 0    |      |
| В      | Y      | 3    | Е    |
| С      | Y      | 2    | Α    |
| D      | Y      | 1    | Α    |
| Е      | Y      | 2    | D    |
| F      | Y      | 4    | С    |
| G      | Y      | 6    | D    |

### Pseudocode Attempt #1

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = dequeue
                                                        O(|V|<sup>2</sup>)
    b.known = true
    for each edge (b,a) in G {
      if(!a.known) {
         if(b.cost + weight((b,a)) < a.cost){</pre>
                                                        O(|E|)
           a.cost = b.cost + weight((b,a))
           a.path = b
                                                       O(|V|^2)
  brackets...
```

#### Can We Do Better?

- Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices
- PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO

### Priority Queue

- Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices
- PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO
- Two ways to implement:
  - 1. Comparable
    - a) class Node implements Comparable<Node>
    - b) public int compareTo(other)
  - 2. Comparator
    - a) class NodeComparator extends Comparator<Node>
    - b) new PriorityQueue(new NodeComparator())

### Pseudocode Attempt #2

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                 O(|V|\log|V|)
    b = deleteMin()
    if (b.known) continue;
    b.known = true
                                                 O(|E|log|V|)
    for each edge (b,a) in G {
     if(!a.known) {
       add(b.cost + weight((b,a)) )
                                                 O(|E|log|V|)
brackets...
```

#### **Proof of Correctness**

- All the "known" vertices have the correct shortest path through induction
  - Initially, shortest path to start node has cost 0
  - If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known" with shortes path
- Key fact: When we mark a vertex "known" we won't discover a shorter path later
  - Remember, we pick the node with the min cost each round
  - Once a node is marked as "known", going through another path will only add weight
  - Only true when node weights are positive