
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2013

Design Patterns Part 2
(Slides by Mike Ernst and David Notkin)

1

Outline

ü  Introduction to design patterns
ü Creational patterns (constructing objects)
⇒ Structural patterns (controlling heap layout)
•  Behavioral patterns (affecting object semantics)

2

Structural patterns: Wrappers

A wrapper translates between incompatible interfaces
Wrappers are a thin veneer over an encapsulated class

modify the interface
extend behavior
restrict access

The encapsulated class does most of the work

Pattern Functionality Interface

Adapter same different

Decorator different same

Proxy same same

3

Adapter

Change an interface without changing functionality
rename a method
convert units
implement a method in terms of another

Example: angles passed in radians vs. degrees

4

Adapter example: scaling rectangles
We have this Rectangle interface

interface Rectangle {
 // grow or shrink this by the given factor
 void scale(float factor);
 ...
 float getWidth();
 float area();
}

Goal: client code wants to use this library to “implement” Rectangle without
rewriting code that uses Rectangle:

class NonScaleableRectangle { // not a Rectangle
 void setWidth(float width) { ... }
 void setHeight(float height) { ... }

 // no scale method
 ...
}

5

Adaptor: Use subclassing

class ScaleableRectangle1 extends NonScaleableRectangle
 implements Rectangle {
 void scale(float factor) {
 setWidth(factor * getWidth());
 setHeight(factor * getHeight());
 }
}

6

Adaptor: use delegation

Delegation: forward requests to another object

class ScaleableRectangle2 implements Rectangle {
 NonScaleableRectangle r;
 ScaleableRectangle2(w,h) {
 this.r = new NonScaleableRectangle(w,h);
 }

 void scale(float factor) {
 setWidth(factor * r.getWidth());
 setHeight(factor * r.getHeight());
 }

 float getWidth() { return r.getWidth(); }
 float circumference() { return r.circumference(); }
 ...
}

7

Subclassing vs. delegation

Subclassing
automatically gives access to all methods of superclass
built in to the language (syntax, efficiency)

Delegation
permits removal of methods (compile-time checking)
wrappers can be added and removed dynamically
objects of arbitrary concrete classes can be wrapped
multiple wrappers can be composed

Some wrappers have qualities of more than one of adapter,
decorator, and proxy

Delegation vs. composition

Differences are subtle
For CSE 331, consider them to be equivalent

8

Types of adapter

Client Implementation

Different
interfaces

Goal of adapter:
connect incompatible interfaces

Client ImplementationAdaptor

Adapter with delegation

Client

Implementation

Adaptor

Adapter with subclassing

Client

Implementation

Adaptor Implementation
Subclass

Adapter with subclassing:
no extension is permitted

Decorator

Add functionality without changing the interface

Add to existing methods to do something additional
(while still preserving the previous specification)

Not all subclassing is decoration

10

Decorator example: Bordered windows

interface Window {
 // rectangle bounding the window
 Rectangle bounds();
 // draw this on the specified screen
 void draw(Screen s);
 ...
}

class WindowImpl implements Window {
 ...
}

11

Bordered window implementations

Via subclasssing:
class BorderedWindow1 extends WindowImpl {
 void draw(Screen s) {
 super.draw(s);
 bounds().draw(s);
 }
}

Via delegation:

class BorderedWindow2 implements Window {
 Window innerWindow;
 BorderedWindow2(Window innerWindow) {
 this.innerWindow = innerWindow;
 }
 void draw(Screen s) {
 innerWindow.draw(s);
 innerWindow.bounds().draw(s);
 }
}

Delegation permits multiple
borders on a window, or a window
that is both bordered and shaded
(or either one of those)

12

A decorator can remove functionality

Remove functionality without changing the interface

Example: UnmodifiableList
What does it do about methods like add and put?

Problem: UnmodifiableList is a Java subtype, but
not a true subtype, of List
Decoration can create a class with no Java
subtyping relationship, which is desirable

13

Proxy

Same interface and functionality as the wrapped class

Control access to other objects

communication: manage network details when
using a remote object
locking: serialize access by multiple clients
security: permit access only if proper credentials
creation: object might not yet exist (creation is
expensive)

hide latency when creating object
avoid work if object is never used

14

