
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2013

Design Patterns I
(Slides by Mike Ernst and David Notkin)

1

Outline

Introduction to design patterns
Creational patterns (constructing objects)
Structural patterns (controlling heap layout)
Behavioral patterns (affecting object semantics)

2

What is a design pattern?

A standard solution to a common programming problem
a design or implementation structure that achieves a
particular purpose
a high-level programming idiom

A technique for making code more flexible
reduce coupling among program components

Shorthand for describing program design
a description of connections among program components
(static structure)
the shape of a heap snapshot or object model (dynamic
structure)

A few simple examples….

3

Example 1: Encapsulation (data hiding)

Problem: Exposed fields can be directly manipulated
Violations of the representation invariant
Dependences prevent changing the implementation

Solution: Hide some components
Permit only stylized access to the object

Disadvantages:
Interface may not (efficiently) provide all desired
operations
Indirection may reduce performance

4

Example 2: Subclassing (inheritance)

Problem: Repetition in implementations
Similar abstractions have similar components (fields,
methods)

Solution: Inherit default members from a superclass
Select an implementation via run-time dispatching

Disadvantages:
Code for a class is spread out, and thus less
understandable
 Run-time dispatching introduces overhead

5

Example 3: Iteration

Problem: To access all members of a collection, must perform
a specialized traversal for each data structure

Introduces undesirable dependences
Does not generalize to other collections

Solution:
The implementation performs traversals, does bookkeeping

The implementation has knowledge about the
representation

Results are communicated to clients via a standard
interface (e.g., hasNext(), next())

Disadvantages:
Iteration order is fixed by the implementation and not under
the control of the client

6

Example 4: Exceptions

Problem:
Errors in one part of the code should be handled
elsewhere
Code should not be cluttered with error-handling code
Return values should not be preempted by error codes

Solution: Language structures for throwing and catching
exceptions
Disadvantages:

Code may still be cluttered
It may be hard to know where an exception will be
handled
Use of exceptions for normal control flow may be
confusing and inefficient

7

Example 5: Generics

Problem:
Well-designed data structures hold one type of object

Solution:
Programming language checks for errors in contents
List<Date> instead of just List

Disadvantages:
More verbose types

8

Why design patterns?

Advanced programming languages like Java provide
lots of powerful constructs – subtyping, interfaces, rich
types and libraries, etc., but they can’t make every
problem easy to solve.

Design patterns are intended to overcome common
problems that arise, even in advanced object-oriented
programming languages – capture common solutions /
idioms, name them, make them easy to reuse

They increase your vocabulary and your intellectual
toolset

9

When (not) to use design patterns

Rule 1: delay
Get something basic working first
Improve it once you understand it

Design patterns can increase or decrease
understandability

Add indirection, increase code size
Improve modularity, separate concerns, ease
description

If your design or implementation has a problem,
consider design patterns that address that problem

10

Why should you care?

You could come up with these solutions on your own
You shouldn't have to!

A design pattern is a known solution to a known
problem

11

Whence design patterns?

The Gang of Four (GoF) – Gamma,
Helm, Johnson, Vlissides
Each an aggressive and thoughtful
programmer
Empiricists, not theoreticians
Found they shared a number of “tricks” and
decided to codify them – a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

12

Patterns vs. patterns

The phrase “pattern” has been wildly overused since the
GoF patterns have been introduced
“pattern” has become a synonym for “[somebody says]
X is a good way to write programs.”

And “anti-pattern” has become a synonym for
“[somebody says] Y is a bad way to write programs.”

There are lots of “x patterns” in the literature (for many
values of x) that really aren’t GOF-style patterns
GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

13

An example of a GoF pattern

Given a class C, what if you want to guarantee that
there is precisely one instance of C in your program?

And you want that instance globally available?

First, why might you want this?

Second, how might you achieve this?

14

Possible reasons for Singleton

One RandomNumber generator
One graph model object
One KeyboardReader, PrinterController, etc…

Make it easier to ensure some key invariants

Make it easier to control when that single instance is
created – can be important for large objects
…

15

public class Singleton {
 private static final Singleton instance
 = new Singleton(); // Private constructor prevents
 // instantiation from other classes
 private Singleton() { }
 public static Singleton getInstance() {
 return instance;
 }
}

Several solutions

public class Singleton {
 private static Singleton instance;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

Eager allocation
of instance

Lazy allocation
of instance

GoF patterns: three categories

Creational Patterns – these abstract the object-instantiation
process

Factory Method, Abstract Factory, Singleton, Builder,
Prototype, …

Structural Patterns – these abstract how objects/classes can
be combined

Adapter, Bridge, Composite, Decorator, Façade,
Flyweight, Proxy, …

Behavioral Patterns – these abstract communication between
objects

Command, Interpreter, Iterator, Mediator, Observer,
State, Strategy, Chain of Responsibility, Visitor, Template
Method, …

Blue = ones we’ve seen already

17

Creational patterns

Constructors in Java are inflexible
–  Can't return a subtype of the class they belong to
–  Always return a fresh new object, never re-use one

Factories
Factory method
Factory object
Prototype
Dependency injection

Sharing
Singleton
Interning
Flyweight

18

Factories

Problem: client desires control over object creation
Factory method

Hides decisions about object creation
Implementation: put code in methods in client

Factory object
Bundles factory methods for a family of types
Implementation: put code in a separate object

Prototype
Every object is a factory, can create more objects
like itself
Implementation: put code in clone methods

19

Motivation for factories:
Changing implementations

Supertypes support multiple implementations
interface Matrix { ... }
class SparseMatrix implements Matrix { ... }
class DenseMatrix implements Matrix { ... }

Clients use the supertype (Matrix)

Still need to use a SparseMatrix or
DenseMatrix constructor
Switching implementations requires code changes

20

Use of factories

Factory
class MatrixFactory {
 public static Matrix createMatrix() {
 return new SparseMatrix();
 }
}

Clients call createMatrix, not a particular constructor
Advantages

To switch the implementation, only change one place
Can decide what type of matrix to create

21

Example: bicycle race

class Race {

 // factory method for bicycle race
 Race createRace() {
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();
 ...
 }

}

22

Example: Tour de France

class TourDeFrance extends Race {

 // factory method
 Race createRace() {
 Bicycle bike1 = new RoadBicycle();
 Bicycle bike2 = new RoadBicycle();
 ...
 }

}

23

Example: Cyclocross

class Cyclocross extends Race {

 // factory method
 Race createRace() {
 Bicycle bike1 = new MountainBicycle();
 Bicycle bike2 = new MountainBicycle();
 ...
 }

}

24

Factory method for Bicycle

class Race {
 Bicycle createBicycle() { ... }
 Race createRace() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
}

Use a factory method to avoid dependence on specific
new kind of bicycle in createRace()

(Now the Race factory calls the Bicycle factory)

25

Code using Bicycle factory methods
class Race {
 Bicycle createBicycle() { ... }
 Race createRace() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
}

class TourDeFrance extends Race {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
}

class Cyclocross extends Race {
 Bicycle createBicycle(Frame) {
 return new MountainBicycle();
 }
}

26

Factory objects/classes
encapsulate factory methods

class BicycleFactory {
 Bicycle createBicycle() { ... }
 Frame createFrame() { ... }
 Wheel createWheel() { ... }
 ...
}

class RoadBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
}

class MountainBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {
 return new MountainBicycle();
 }
}

27

Using a factory object
class Race {
 BicycleFactory bfactory;
 // constructor
 Race() { bfactory = new BicycleFactory(); }
 Race createRace() {
 Bicycle bike1 = bfactory.createBicycle();
 Bicycle bike2 = bfactory.createBicycle();
 ...
 }
}

class TourDeFrance extends Race {
 // constructor
 TourDeFrance() { bfactory = new RoadBicycleFactory(); }
}

class Cyclocross extends Race {
 // constructor
 Cyclocross() { bfactory = new MountainBicycleFactory(); }
}

28

Separate control over bicycles and races

class Race {
 BicycleFactory bfactory;
 // constructor
 Race(BicycleFactory bfactory)
 { this.bfactory = bfactory; }

 Race createRace() {
 Bicycle bike1 = bfactory.completeBicycle();
 Bicycle bike2 = bfactory.completeBicycle();
 ...
 }
}
// No special constructor for TourDeFrance or
// for Cyclocross

 Now we can specify the race and the bicycle separately:

 new TourDeFrance(new TricycleFactory())

29

DateFormat factory methods

DateFormat class encapsulates knowledge about how to format
dates and times as text

Options: just date? just time? date+time? where in the world?
Instead of passing all options to constructor, use factories.
The subtype created doesn't need to be specified.

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();

DateFormat df3 = DateFormat.getDateInstance(DateFormat.FULL,
Locale.FRANCE);

Date today = new Date();

System.out.println(df1.format(today)); // “Jul 4, 1776"

System.out.println(df2.format(today)); // "10:15:00 AM"

System.out.println(df3.format(today)); // “juedi 4 juillet 1776"

30

Prototype pattern

Every object is itself a factory
Each class contains a clone method that creates a copy of
the receiver object

class Bicyle {
 Bicycle clone() { ... }
}

Often, Object is the return type of clone
clone is declared in Object
Design flaw in Java 1.4 and earlier: the return type may
not change covariantly in an overridden method

i.e., return type could not be made more restrictive
31

Using prototypes

class Race {
 Bicycle bproto;
 // constructor
 Race(Bicycle bproto) { this.bproto = bproto; }
 Race createRace() {
 Bicycle bike1 = (Bicycle) bproto.clone();
 Bicycle bike2 = (Bicycle) bproto.clone();
 ...
 }
}

Again, we can specify the race and the bicycle
separately:

new TourDeFrance(new Tricycle())

32

Dependency injection
Change the factory without changing the code

With a regular in-code factory:

 BicycleFactory f = new TricycleFactory();
 Race r = new TourDeFrance(f)

With external dependency injection:

 BicycleFactory f
 = ((BicycleFactory)
 DependencyManager.get("BicycleFactory"));
 Race r = new TourDeFrance(f);

plus an external file:
<service-point id=“BicycleFactory">
 <invoke-factory>
 <construct class=“Bicycle">
 <service>Tricycle</service>
 </construct>
 </invoke-factory>
</service-point>

+ Change the factory without recompiling
- Harder to understand
- Easier to make mistakes

33

Sharing

Recall the second weakness of Java constructors
Java constructors always return a new object, never a
pre-existing object

Singleton: only one object exists at runtime
Factory method returns the same object every time
(we’ve seen this already)

Interning: only one object with a particular (abstract) value
exists at runtime

Factory method returns an existing object, not a new one
Flyweight: separate intrinsic and extrinsic state, represent
them separately, and intern the intrinsic state

Implicit representation uses no space

34

Interning pattern
Reuse existing objects instead of creating new ones

Less space
May compare with == instead of equals()

Permitted only for immutable objects

35

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Univ. Way"
(String)

"O2139"
(String)

StreetSegment
without interning

StreetSegment
with interning

Interning mechanism

Maintain a collection of all objects
If an object already appears, return that instead

HashMap<String, String> segnames;
String canonicalName(String n) {
 if (segnames.containsKey(n)) {
 return segnames.get(n);
 } else {
 segnames.put(n, n);
 return n;
 }
}

Java builds this in for strings: String.intern()
Two approaches:

create the object, but perhaps discard it and return another
check against the arguments before creating the new object

36

Set supports
contains but not get

// why not Set<String>?

java.lang.Boolean
does not use the Interning pattern

public class Boolean {
 private final boolean value;
 // construct a new Boolean value
 public Boolean(boolean value) {
 this.value = value;
 }

 public static Boolean FALSE = new Boolean(false);
 public static Boolean TRUE = new Boolean(true);

 // factory method that uses interning
 public static valueOf(boolean value) {
 if (value) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
}

37

Recognition of the problem

Javadoc for Boolean constructor:
Allocates a Boolean object representing the value argument.
Note: It is rarely appropriate to use this constructor. Unless a
new instance is required, the static factory valueOf
(boolean) is generally a better choice. It is likely to yield
significantly better space and time performance.

Josh Bloch (JavaWorld, January 4, 2004):

The Boolean type should not have had public constructors.
There's really no great advantage to allow multiple trues or
multiple falses, and I've seen programs that produce millions of
trues and millions of falses, creating needless work for the
garbage collector.
So, in the case of immutables, I think factory methods are great.

38

Flyweight pattern

Good when many objects are mostly the same
Interning works only if objects are entirely the same
(and immutable!)

Intrinsic state: same across all objects
Technique: intern it (interning requires immutability)

Extrinsic state: different for different objects
Represent it explicitly
Advanced technique: make it implicit (don’t even
represent it!)

Making it implicit requires immutability (or other
properties)

39

Example without flyweight: bicycle spoke

class Wheel {
 FullSpoke[] spokes;
 ...
}
class FullSpoke {
 int length;
 int diameter;
 bool tapered;
 Metal material;
 float weight;
 float threading;
 bool crimped;
 int location; // rim and hub holes this is installed in
}

Typically 32 or 36 spokes per wheel

but only 3 varieties per bicycle.
In a bike race, hundreds of spoke varieties, millions of instances

40

Alternatives to FullSpoke
class IntrinsicSpoke {
 int length;
 int diameter;
 boolean tapered;
 Metal material;
 float weight;
 float threading;
 boolean crimped;
}

This doesn't save space: it's the same as FullSpoke
class InstalledSpokeFull extends IntrinsicSpoke {
 int location;
}

This saves space
class InstalledSpokeWrapper {
 IntrinsicSpoke s; // refer to interned object
 int location;
}

… but flyweight version uses even less space

41

Original code to true (align) a wheel
class FullSpoke {
 // Tension the spoke by turning the nipple the
 // specified number of turns.
 void tighten(int turns) {
 ... location ... // location is a field
 }
}

class Wheel {
 FullSpoke[] spokes;
 void align() {
 while (wheel is misaligned) {
 // tension the ith spoke
 ... spokes[i].tighten(numturns) ...
 }
 }
}

What is the value of the location
field in spokes[i]?

42

Flyweight code to true (align) a wheel
class IntrinsicSpoke {
 void tighten(int turns, int location) {
 ... location ... // location is a parameter
 }
}

class Wheel {
 IntrinsicSpoke[] spokes;

 void align() {
 while (wheel is misaligned) {
 // tension the ith spoke, which affects the wheel
 ... spokes[i].tighten(numturns, i) ...
 }
 }
}

43

Flyweight discussion

What if FullSpoke contains a wheel field
pointing at the Wheel containing it?
What if FullSpoke contains a boolean
broken field?

Flyweight is manageable only if there are very
few mutable (extrinsic) fields.
Flyweight complicates the code.
Use flyweight only when profiling has
determined that space is a serious problem.

Wheel methods pass this to the
methods that use the wheel field.

Add an array of booleans in Wheel,
parallel to the array of Spokess.

44

