
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2013

Subtypes and Subclasses
(Slides by Mike Ernst and David Notkin)

1

What is subtyping?

Sometimes every B is an A
In a library database:

every book is a library holding
every CD is a library holding

Subtyping expresses this
B is a subtype of A means:
"every object that satisfies interface B
 also satisfies interface A"

Goal: code written using A's specification operates
correctly even if given a B

Plus: clarify design, share tests,
 (sometimes) share code

2

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

Subtypes are substitutable

Subtypes are substitutable for supertypes
–  Instances of subtype won't surprise client by failing

to satisfy the supertype's specification
–  Instances of subtype won't surprise client by

having more expectations than the supertype's
specification

We say that B is a true subtype of A if B has a stronger
specification than A

This is not the same as a Java subtype
Java subtypes that are not true subtypes are
confusing and dangerous

3

Subtyping and subclassing

Substitution (subtype) — a specification notion
–  B is a subtype of A iff an object of B can masquerade as

an object of A in any context
–  Similarities to satisfiability (behavior of P is a subset of S)

Inheritance (subclass) — an implementation notion
–  Abstract out repeated code
–  To create a new class, just write the differences
–  Every subclass is a Java subtype

But not necessarily a true subtype
Outline of this lecture:

Specification
Implementation (& Java details)

4

Subclasses support inheritance
Inheritance makes it easy to add functionality

Suppose we run a web store with a class for Products...

class Product {
 private String title;
 private String description;
 private float price;
 public float getPrice() { return price; }
 public float getTax()

 { return getPrice() * 0.095f; }
 // ...
}

... and we need a class for Products that are on sale

5

Code copying is a bad way to add functionality

We would never dream of cutting and pasting like this:

class SaleProduct {
 private String title;
 private String description;
 private float price;
 private float factor;
 public float getPrice(){ return price*factor; }
 public float getTax()

 { return getPrice() * .095; }
 ...
}

6

Inheritance makes small extensions small

It’s much better to do this:

class SaleProduct extends Product {

 private float factor;

 public float getPrice() {

 return super.getPrice()*factor;

 }

}

7

Benefits of subclassing & inheritance

Don’t repeat unchanged fields and methods
In implementation

Simpler maintenance: just fix bugs once
In specification

Clients who understand the superclass specification
need only study novel parts of the subclass

Modularity: can ignore private fields and methods of
superclass (if properly defined)
Differences are not buried under mass of similarities

Ability to substitute new implementations
No client code changes required to use new subclasses

8

Subclassing can be misused

Poor planning leads to a muddled inheritance hierarchy
Relationships may not match untutored intuition

If subclass is tightly coupled with superclass
Can depend on implementation details of superclass
Changes in superclass can break subclass

“fragile base class problem”

Subtyping and implementation inheritance are orthogonal
Subclassing gives you both
Sometimes you want just one

Interfaces: subtyping without inheritance
Composition: reuse implementation without subtyping

9

Every square is a rectangle (elementary school)

interface Rectangle {
 // effects: fits shape to given size
 // thispost.width = w, thispost.height = h
 void setSize(int w, int h);
}
interface Square implements Rectangle {…}

Which is the best option for Square.setSize()?
1.  // requires: w = h
// effects: fits shape to given size
void setSize(int w, int h);

2.  // effects: sets all edges to given size
void setSize(int edgeLength);

3.  // effects: sets this.width and this.height to w
void setSize(int w, int h);

4.  // effects: fits shape to given size
// throws BadSizeException if w != h
void setSize(int w, int h) throws BadSizeException;

10

Square and rectangle are unrelated (subtypes)

Square is not a (true subtype of) Rectangle:
Rectangles are expected to have a width and height
that can be changed independently
Squares violate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
Squares are expected to have equal widths and heights
Rectangles violate that expectation, could surprise client

Inheritance isn't always intuitive
Benefit: it forces clear thinking and prevents errors

Solutions:

Make them unrelated (or siblings under a common parent)
Make them immutable

11

Rectangle

Square

Square

Rectangle

Shape

Square Rectangle

Properties class stores string key-value pairs.
It extends Hashtable functionality.

What’s the problem?

Inappropriate subtyping in the JDK

   class Hashtable<K,V> {

   // modifies: this

   // effects: associates the specified value with the specified key

   public void put (K key, V value);

   // returns: value with which the

   // specified key is associated

   public V get (K key);

   }

   // Keys and values are strings.

   class Properties extends Hashtable<Object,Object> { // simplified

   // modifies: this

   // effects: associates the specified value with the specified key

   public void setProperty(String key, String val) { put(key,val); }

   // returns: the string with which the key is associated

   public String getProperty(String key) { return (String)get(key); }

   }

Hashtable tbl = new Properties();
tbl.put(“One”, new Integer(1));
tbl.getProperty(“One”); // crash!

12

Violation of superclass specification

Properties class has a simple rep invariant:
keys and values are Strings

But client can treat Properties as a Hashtable
Can put in arbitrary content, break rep invariant

From Javadoc:
Because Properties inherits from Hashtable, the put and
putAll methods can be applied to a Properties object. ... If
the store or save method is called on a "compromised"
Properties object that contains a non-String key or value,
the call will fail.

Also, the semantics are more confusing than we've shown
getProperty("prop") works differently than
get("prop") !

13

Solution 1: Generics

Bad choice:
class Properties extends Hashtable<Object,Object> { ... }

Better choice:
class Properties extends Hashtable<String,String> { ... }

JDK designers deliberately didn’t do this. Why?

 (postpone for now – we’ll get to generics shortly)

14

Solution 2: Composition

class Properties { // no “extends” clause!
 private Hashtable<Object, Object> hashtable; // the “delegate”

 // requires: key and value are not null

 // modifies: this

 // effects: associates specified value with specified key

 public void setProperty (String key, String value) {

 hashtable.put(key,value);

 }

 // effects: returns string with which key is associated

 public String getProperty (String key) {

 return (String) hashtable.get(key);

 }

 ...

}

15

Substitution principle for classes

If B is a subtype of A, a B can always be substituted for an A
Any property guaranteed by the supertype must be
guaranteed by the subtype

–  The subtype is permitted to strengthen & add
properties

–  Anything provable about an A is provable about a B
–  If an instance of subtype is treated purely as supertype

– only supertype methods and fields queried – the
result should be consistent with an object of the
supertype being manipulated

No specification weakening
–  No method removal
–  An overriding method has a stronger (or equal) spec

A weaker or equal precondition
A stronger or equal postcondition

16

Substitution principle for methods

Constraints on methods
For each supertype method, subtype must have a
corresponding overriding method

Can be method implementations inherited from supertype
Subtype may also introduce new methods

Each overriding method must strengthen (or match)
the spec:

Ask nothing extra of client (“weaker precondition”)
Requires clause is at most as strict as in the supertype method

Guarantee at least as much (“stronger postcondition”)
Effects clause is at least as strict as in the supertype method
No new entries in modifies clause

17

The spec for a substituting (overriding)
method must be stronger (or same)

Method inputs:
–  Argument types in A.foo() may be

replaced with supertypes in B.foo()
(“contravariance”)

–  This places no extra demand on the client
–  But Java forbids any change (Why?)

Method results:
–  Result type of A.foo() may be replaced by

a subtype in B.foo() (“covariance”)
This doesn't violate any expectation of the client

–  No new exceptions (for values in the domain)
–  Existing exceptions can be replaced with subtypes

This doesn't violate any expectation of the client

 18

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

Substitution exercise

Suppose we have a method which, when given one
product, recommends another:

 class Product {
 Product recommend(Product ref); }

Which of these are possible forms of this method in
SaleProduct (a true subtype of Product)?

 Product recommend(SaleProduct ref);

 SaleProduct recommend(Product ref);

 Product recommend(Object ref);

 Product recommend(Product ref) throws NoSaleException;

Same kind of reasoning for exception subtyping, and
modifies clause

// OK

// OK, but is Java overloading
// bad

// bad

19

   class Hashtable { // class is somewhat simplified (generics omitted)
   // modifies: this
   // effects: associates the specified value with the specified key
   public void put (Object key, Object value);

   // returns: value with which the
   // specified key is associated
   public Object get (Object key);
   }
   class Properties extends Hashtable {
   // modifies: this
   // effects: associates the specified value with the specified key
   public void put (String key, String val) { super.put(key,val); }

   // returns: the string with which the key is associated
   public String get (String key) { return (String)super.get(key); }
   }

JDK example: not a stronger spec

Might throw an exception for value in the domain
New exception = weaker spec!

Result type is a subtype
Stronger guarantee = OK

Arguments are subtypes
Stronger requirement =
weaker specification!

Java subtyping

Java types:
Defined by classes, interfaces, primitives

Java subtyping stems from B extends A and
B implements A declarations
In a Java subtype, each corresponding method has:

same argument types
if different, overloading: unrelated methods

compatible (covariant) return types
a (somewhat) recent language feature, not
reflected in (e.g.) clone

no additional declared exceptions
21

Java subtyping guarantees

A variable’s run-time type (= the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error
If a variable of declared (compile-time) type T holds a
reference to an object of actual (runtime) type T', then T'
must be a (Java) subtype of T

Corollaries:
Objects always have implementations of the methods
specified by their declared type
If all subtypes are true subtypes, then all objects meet the
specification of their declared type

This rules out a huge class of bugs
22

Inheritance can break encapsulation

public class InstrumentedHashSet<E> extends HashSet<E> {

 private int addCount = 0; // count attempted insertions
 public InstrumentedHashSet(Collection<? extends E> c) {

 super(c);

 }
 public boolean add(E o) {

 addCount++;

 return super.add(o);
 }

 public boolean addAll(Collection<? extends E> c) {

 addCount += c.size();
 return super.addAll(c);

 }

 public int getAddCount() { return addCount; }
}

23

Dependence on implementation

What does this code print?
 InstrumentedHashSet<String> s =
 new InstrumentedHashSet<String>();

 System.out.println(s.getAddCount());

 s.addAll(Arrays.asList("CSE", "331”));
 System.out.println(s.getAddCount());

•  Answer depends on implementation of addAll() in HashSet

–  Different implementations may behave differently!
–  HashSet.addAll() calls add() ⇒ double-counting

•  AbstractCollection.addAll specification states:
–  “Adds all of the elements in the specified collection to this

collection.”
–  Does not specify whether it calls add()

•  Lesson: designers should plan for their classes to be extended

// 0

// 4!

24

Solutions

1.  Change spec of HashSet
Indicate all self-calls
Less flexibility for implementers of specification

2.  Eliminate spec ambiguity by avoiding self-calls
a)  “Re-implement” methods such as addAll

Requires re-implementing methods
b)  Use a wrapper

No longer a subtype (unless an interface is handy)
Bad for callbacks, equality tests, etc.

25

Solution 2b: composition

public class InstrumentedHashSet<E> {
 private final HashSet<E> s = new HashSet<E>();

 private int addCount = 0;

 public InstrumentedHashSet(Collection<? extends E> c) {
 this.addAll(c);

 }

 public boolean add(E o) {
 addCount++; return s.add(o);

 }

 public boolean addAll(Collection<? extends E> c) {
 addCount += c.size(); return s.addAll(c);

 }

 public int getAddCount() { return addCount; }

 // ... and every other method specified by HashSet<E>
}

The implementation no
longer matters

Delegate

26

Composition (wrappers, delegation)

Implementation reuse without inheritance
Easy to reason about; self-calls are irrelevant
Example of a “wrapper” class
Works around badly-designed classes
Disadvantages (may be a worthwhile price to pay):

May be hard to apply to callbacks, equality tests
Tedious to write (your IDE will help you)
Does not preserve subtyping

27

Composition does not preserve subtyping

InstrumentedHashSet is not a HashSet anymore
So can't easily substitute it

It may be a true subtype of HashSet
But Java doesn't know that!
Java requires declared relationships
Not enough to just meet specification

Interfaces to the rescue
Can declare that we implement interface Set
If such an interface exists

28

Interfaces reintroduce Java subtyping
public class InstrumentedHashSet<E> implements Set<E> {

 private final Set<E> s = new HashSet<E>();

 private int addCount = 0;

 public InstrumentedHashSet(Collection<? extends E> c) {

 this.addAll(c);

 }

 public boolean add(E o) {

 addCount++;

 return s.add(o);

 }

 public boolean addAll(Collection<? extends E> c) {

 addCount += c.size();

 return s.addAll(c);

 }

 public int getAddCount() { return addCount; }

 // ... and every other method specified by Set<E>

}

Avoid encoding implementation details

What about this constructor?
InstrumentedHashSet(Set<E> s) {
 this.s = s;
 addCount = s.size();
}

29

Interfaces and abstract classes

Provide interfaces for your functionality
The client codes to interfaces rather than concrete
classes
Allows different implementations later
Facilitates composition, wrapper classes

Basis of lots of useful, clever tricks
We'll see more of these later

Consider providing helper/template abstract classes
Can minimize number of methods that new
implementation must provide
Makes writing new implementations much easier
Using them is entirely optional, so they don't limit freedom
to create radically different implementations

30

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>

// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>

 implements Collection<E>
// type of all ordered collections

interface List<E> extends Collection<E>
// skeletal implementation of List<E>

Abstract class AbstractList<E> extends
 AbstractCollection<E> implements List<E>

// an old friend...
class ArrayList<E> extends AbstractList<E>

31

Why interfaces instead of classes

Java design decisions:
A class has exactly one superclass
A class may implement multiple interfaces
An interface may extend multiple interfaces

Observation:
multiple superclasses are difficult to use and to
implement
multiple interfaces, single superclass gets most of
the benefit

32

Pluses and minuses of inheritance

Inheritance is a powerful way to achieve code reuse
Inheritance can break encapsulation

A subclass may need to depend on unspecified details of
the implementation of its superclass

e.g., pattern of self-calls

Subclass may need to evolve in tandem with superclass
Safe within a package where implementation of both is under
control of same programmer

Authors of superclass should design and document
self-use, to simplify extension

Otherwise, avoid implementation inheritance and use
composition instead

33

