
 CSE 331 Final Exam Sample Solution 12/9/13

 Page 1 of 13

Question 1. (22 points) Class specification. One of last summer’s interns was working

on a generic version of a graph that used an adjacency matrix representation. There’s

some existing code, but it’s not specified or commented properly and it needs some errors

fixed. In this problem we’ll figure out what it does and clean it up.

Here is the code:

public class AdjacencyMatrixGraph<Edge> {

 private Edge[][] matrix;

 public AdjacencyMatrixGraph(int nodeCount) {

 matrix = new Edge[nodeCount][nodeCount];

 }

 public int getNodeCount() {

 return matrix.length;

 }

 public Edge getEdge(int start, int dest) {

 return matrix[start][dest];

 }

 public void addEdge(int start, int dest, Edge e) {

 matrix[start][dest] = e;

 }

}

(a) (3 points) The code for the constructor won’t compile. What’s wrong and how can it

be fixed so it works as intended, but without any compiler errors or warnings. (Hints: an

annotation – @Something – might be useful along with any other repairs needed. Also,

remember that when a Java array is allocated with new the elements are initialized to

null, so that’s not the problem.)

The error is that we cannot create an array of a generic type (Edge in this case).

Here is a version that does work, along with the annotation needed to eliminate the

compiler warning.

 @SuppressWarnings("unchecked")

 public AdjacencyMatrixGraph(int nodeCount) {

 matrix = (Edge[][]) new Object[nodeCount][nodeCount];

 }

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 2 of 13

Question 1. (cont.) (b) (9 points) Write a suitable JavaDoc comment summarizing the

class, and inside the class give a suitable representation invariant (RI) and abstraction

function (AF). The class declaration and instance variable declaration are repeated here,

along with space for the JavaDoc comment above the class declaration. Write the RI and

AF comments below the instance variable declaration.

/**

 * An AdjacencyMatrixGraph represents a mutable directed

 * graph with edges labeled with objects of type Edge.

 * There is at most one directed edge from one particular

 * node to another.

 * This representation is particularly effective for dense

 * matrices since it allows fast O(1) access to edge data

 * at the cost of requiring O(|V|^2) storage.

 */

public class AdjacencyMatrixGraph<Edge> {

 private Edge[][] matrix;

 // write a suitable RI below

 // matrix is not null, and matrix is a square matrix

 // with size > 0 (i.e., for 0 <= i < matrix.length,

 // matrix[i].length = matrix.length).

 // write the corresponding AF below

 // matrix.length is the number of nodes in the graph.

 // For 0 <= i, j < matrix.length, if matrix[i][j] is

 // null, then there is no directed edge from node i to

 // node j, otherwise matrix[i][j] is the label of the

 // directed edge from i to j.

Grading notes:

 Summary: we did not mark off points if the specification did not mention the

efficiency, although that is probably something that would be appropriate in

the public description of this class.

 Representation invariant: The constructor and getNodeCount method will

actually work if the matrix size is allowed to be 0, but it will be impossible to

meet the preconditions needed to call addEdge and getEdge successfully.

So realistically the matrix size needs to be > 0. But we did not deduct

anything if the size was required to be >= 0 instead.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 3 of 13

Question 1. (cont.) (c) (10 points) Give proper CSE331-style JavaDoc specification

comments for the getEdge and addEdge methods of this class. The methods are

repeated below for your convenience, with space for your JavaDoc comments.

/**

 * Return the label of the directed edge from node

 * start to dest, or return null if no such edge.

 *

 * @param start The origin node of the edge

 * @param dest The destination node of the edge

 * @requires 0 <= start, end < getNodeCount()

 * @return the Edge label from start to dest if there is

 * such an edge, otherwise null.

 */

public Edge getEdge(int start, int dest) {

 return matrix[start][dest];

}

/**

 * Add or modify the edge from start to dest.

 *

 * @param start The origin node of the edge

 * @param dest The destination node of the edge

 * @param e The label for the new edge

 * @requires 0 <= start, end < getNodeCount()

 * @modifies this

 * @effects add or replace the edge from start to dest

 * with one whose label is e. If e is null,

 * this effectively removes the edge start->dest

 * from the graph.

 */

public void addEdge(int start, int dest, Edge e) {

 matrix[start][dest] = e;

}

Notes: There are two possible ways to handle a null value for e in addEdge. One

is to disallow it by specifying e!=null as a precondition (adding it to the

@requires clause). The other is the solution shown above, which is to allow a

null value of e to be used to remove an edge if one is present. Either solution was

acceptable. The @requires preconditions need to mention that start and end

are valid node numbers. Strictly speaking this should use an abstract operation like

getNodeCount(), but we were a bit relaxed in the grading and allowed

matrix.length instead since this is easy to overlook.

A fairly common error in these specifications was to describe their effect on the

matrix rather than to describe operations on graph edges.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 4 of 13

Question 2. (16 points) A bit of design. Ima Hacker, a new Java programmer, was

asked to create a small Java program for a text-based tic-tac-toe game, where the user

plays against the computer. We eventually want to make the game work on a

smartphone, but for now we just want a version that works using a keyboard and monitor.

Omitting all the details, here’s the outline of the program that Ima hacked up one

afternoon.

/** A tic-tac-toe game */

public class TicTacToe {

 // instance variables omitted

 /** Initialize a new game object */

 public TicTacToe() { }

 /** Print the state of the game board on System.out */

 public void printGame() { }

 /** Read the player's next move from the keyboard

 * and update the game to reflect that move. */

 public void getPlayerMove() { }

 /** Calculate the computer's next move and print it on

 * System.out */

 public void computerMove() { }

 /** Calculate the computer and user's current scores

 * and print them on System.out */

 public void printScores() { }

 /** Reset the game back to the same initial state it had

 * when it was created */

 public void resetGame() { }

}

While this set of methods contains all the operations we want for the initial game, the

design has problems.

(Question continued on the next page. You may remove this page for reference while

working on it if convenient.)

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 5 of 13

Question 2. (cont.) (a) (4 points) What is (are) the major design flaw(s) in the above

design? A brief couple of sentences should be enough to get the point across.

The major design flaw is that the game logic and user interface have been jumbled

together in a single class. These need to be separated, particularly if we ever hope to

be able to replace the user interface with a different one without a major rewrite.

(b) (12 points) Describe how you would refactor (change) the initial design to improve it.

Briefly sketch the class(es) and methods in your design, and what each of them do. You

do not need to provide very much detail, but there should be enough so we can tell how

you’ve rearranged the design, what the major pieces are, and how they interact.

(There’s additional space on the next page if you need it for your answer.)

The important thing that the application should be split using the model-view-

controller pattern to separate the game logic from the interface.

Model: game logic. Operations would include the following from the original code:

 Create a new game model

 Record a new player move

 Calculate a new move for the computer (probably in a separate

module/object from the core ADT storing the game state)

 Return the current user and computer scores to the caller

 Return the current state of the game board to the caller

 Reset the game board to start a new game

Viewer/Controller (likely a single module in a console text-based game):

 Process initialize and reset commands from the user

 Read player moves and call the model to update the game state

 Display computer moves

 Display current contents of the game board and current scores

The viewer/controller and the model would likely use some form of the Observer

pattern to communicate.

There are obviously many possible answers to this question. The important thing

we were looking for was a sensible overall organization and partitioning of the

functions between modules.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 6 of 13

Question 3. (8 points) A rather generic question. The following method performs a

binary search for an integer value x in a sorted array of integers.

 /** Search a sorted array of integers* for a given value

 * @param a Array to be searched

 * @param x Value to search for in array a

 * @return If x is found in a, return largest i such

 * that a[i]==x. Return -1 if x not found in a

 * @requires a!=null & a is sorted in non-decreasing

 * order (i.e., a[0]<=a[1]<=...<=a[a.length-1])

 */

 public static <T extends Comparable<T>>

 int bsearch(int T[] a, int T x) {

 int L = -1;

 int R = a.length;

 // inv: a[0..L] <= x && a[R..a.length-1] > x &&

 // a[L+1..R-1] not examined

 while (L+1 != R) {

 int mid = (L+R)/2;

 if (a[mid] <= x a[mid].compareTo(x) <= 0)

 L = mid;

 else // a[mid] > x

 R = mid;

 }

 if (L >= 0 && a[L] == x a[L].compareTo(x) == 0)

 return L;

 else

 return -1;

 }

We would like to modify this code to change it into a generic method that works with any

sorted array whose elements have type Comparable<T> (i.e., the elements can be

ordered using the compareTo method). Mark the code above to show the changes

needed to turn this into a generic method.

Changes shown in the code above. * = no deduction if the heading comment was left

unmodified and still refers to an integer array (that’s easy to miss and not the

point). The test at the end could have been written as a[L].equals(x), which is

equivalent to checking that compareTo returns 0.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 7 of 13

Question 4. (8 points) There’s something fishy about this question. Suppose we have

the following class hierarchy:

class Creature extends Object { }

class Fish extends Creature {

 /** Return the weight of this Fish */

 public float getWeight() { return ...; }

}

class Salmon extends Fish { }

class Haddock extends Fish { }

class Tuna extends Fish { }

Class Creature does not have a getWeight method. Class Fish implements that

method and all of its subclasses inherit it.

Write a static method collectionWeight whose parameter can be any Java

Collection containing Fish objects (including objects of any Fish subclass(es).

Method collectionWeight should return the total weight of all the Fish in the

Collection, using getWeight to determine the weight of each individual Fish.

Hints: Method collectionWeight will need a proper generic type for its parameter.

Java Collections are things like Lists and Sets that implement the Iterable

interface. They do not include things like Maps, which are not simple collections of

objects.

 public static

 float collectionWeight(Collection<? extends Fish> f) {

 float totalWeight = 0;

 for (Fish fish: f) {

 totalWeight += fish.getWeight();

 }

 return totalWeight;

 }

The heading of the method can also be written as

 public static <T extends Fish>

 float collectionWeight(Collection<T> f) ...

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 8 of 13

Question 5. (7 points) Testing. (a) (3 points) There are many metrics we can use to try

to evaluate how well a test suite does its job. One common metric is code coverage. If a

test suite achieves 100% code coverage that means that every statement in the code being

tested was executed by at least one test.

True or false: 100% code coverage is sufficient to guarantee that if an error is present in

the code then it will be detected. If your answer is true give a brief justification. If your

answer is false, give an example that shows why 100% code coverage is not sufficient.

False. An example similar to one from the lecture slides is:

 int min(int a, int b) {

 int ans = a;

 if (a <= b)

 ans = b;

 return a;

 }

The test min(1,2) executes every statement but misses the bug.

(b) (2 points) Give one advantage that black box tests have compared to white (clear,

glass) box tests. Be brief.

Some possibilities:

 Test code less likely to be biased by implementation details of the code being

tested.

 Tests can be used with different implementations.

 Allows for tests to be developed independently of, and possibly before, the

implementation.

(c) (2 points) Give one advantage that white (clear, glass) box tests have compared to

black box tests. Be brief.

The main advantage is that we can test implementation details that are not part of

the specification. Examples: caching behavior, automatic expansion of data

structures when their initial capacity is exceeded.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 9 of 13

Some shorter questions.

Question 6. (8 points) Subtyping. Suppose we have a class A with a method m:

class A {

 public T m(S x) { ... }

}

Now suppose we create a class B that is a subclass of A with its own method m that is

supposed to override the one from class A:

class B extends A {

 public T1 m(S1 x) { ... }

}

 (a) (4 points) If we want class B to be a true specification subtype of class A, what are the

possible relationships between m’s types T and S in A and types T1 and S1 in B? Do the

types have to match exactly or can one type be a specification (true) subtype or supertype

of the other? Remember, this part of the question is asking about the typing rules for true

specification subtypes, which might (or might not) be the same as Java’s subclass rules.

Both of these must hold:

 T1 is the same as, or is a subtype of T.

 S1 is the same as, or is a supertype of S.

(b) (4 points) Are Java’s rules for subclass and method subtypes the same as the

specification subtyping rules in part (a)? If so, it’s sufficient to just say that they are the

same. If not, what’s the difference, and why are the Java rules different? (Be brief)

Java allows result types to be covariant, i.e., T1 can be a subtype of T. However,

parameter types must be the same. If the parameter type in a subclass is different,

then the subclass method overloads the one from the superclass instead of

overriding it.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 10 of 13

Question 7. (9 points) The implementation of equals in class Object returns true if

two objects are exactly the same, i.e., a.equals(b) returns the result of the

comparison a==b.

(a) Show that this definition of equals defines a proper equivalence relation (i.e., show

that this implementation satisfies the properties required of an equivalence relation). A

brief answer should be sufficient (and, yes, it’s not tricky or complicated).

An equivalence relation must be reflexive, symmetric, and transitive. All of these

are trivially true if equivalence is defined as object equality:

 a==a always.

 If a==b, then a and b refer to the same object, so b==a.

 If a==b and b==c, then all three refer to the same object, so a==c.

(b) The actual JavaDoc specification of equals in Object is fairly complex,

enumerating many properties that an equivalence relation should have. Why didn’t the

specification for a.equals(b) in Object simply state that it returns the result a==b?

If Object.equals was specified to be object equality then no subclass could

weaken that requirement. It would not be possible to treat two different objects as

equal, even if they had the same abstract value.

(c) The actual implementation of hashCode in Object returns the memory address of

the object. Explain why this implementation of hashCode satisfies the necessary

properties required of a hashCode implementation.

The requirement on hashCode is that if a.equals(b) then it must be true that

a.hashCode()==b.hashCode(). If a.equals(b) according to the equals

method in Object, then we know that a==b. That means a and b have the same

memory address, so they both have the same hashCode() value using Object’s

implementation of hashCode.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 11 of 13

Question 8. (7 points) A couple of questions on usability:

(a) (2 points) If several events occur fast enough, a person perceives them as being a

single event. How fast is “fast enough”? Circle the longest time interval that can

generally occur between two events for them to be perceived as happening at the same

time:

 10 sec. 5 sec. 2 sec. 1 sec. 0.5 sec. 0.1 sec. 0.01 sec. 0.001 sec.

(b) (2 points) The complexity of a user interface should often be limited by the number of

things that a typical person can hold at once in their short-term working memory. What

is the maximum number of things that a typical person can hold in their short-term

memory? (circle)

 20 15 12 7 3 1

(c) (3 points) A strategy that initially seemed like a good idea was to present the user

with a “confirmation dialog” requiring an additional approval before some irreversible

action is performed. For example, the dialog might say “delete file?” or “launch

missiles?” and require the user to click either yes or no. Why does this turn out not to be

particularly effective in practice?

For common or frequently used operations, users tend to “chunk” acknowledging

the confirmation dialog with the action that produces it. The sequence becomes a

single action done without thinking separately about the confirmation step.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 12 of 13

Question 9. (7 points) System design and implementation.

(a) (3 points) Why force everyone on a project to use a build tool like make or ant?

IDEs like Eclipse have built-in tools to do this, why not let people use their IDE’s build

tools if they have them?

It is important that everyone on a project use the same build tools so everyone gets

the same, reproducible build results.

A large project can be built either bottom-up starting with modules that do not depend on

others and that provide infrastructure for modules higher up, or top-down, starting at the

top layer and adding lower-level modules as the project progresses.

(b) (2 points) Give one advantage of a top-down development strategy over a bottom-up

one. (But be brief about it!)

Problems with global design and implementation decisions can be found earlier in

the project, when they are (much) less expensive and easier to fix.

There is usually better visibility. Clients can see that progress is being made and

partially-built systems are easier to demonstrate and try earlier.

(c) (2 points) Give one advantage of a bottom-up development strategy over a top-down

one. (And be brief about this, too!)

Efficiency and feasibility problems tend to get uncovered earlier. For example, it is

easier to discover that the hardware or infrastructure won’t be able to provide the

required performance or satisfy other required constraints.

Bottom-up can require building less non-deliverable scaffolding code, although this

is not necessarily a major advantage.

 CSE 331 Final Exam Sample Solution 12/9/13

 Page 13 of 13

Question 10. (8 points) Design patterns. For each of the following design patterns, give

a brief explanation of the design problem that it solves and an example of a situation

where it would be appropriate to use the pattern. For example,

Singleton: we want to insure that only one instance of a class is created. Examples would

be to ensure there is only one random number generator shared throughout a program, or

there is only one instance of a class that controls a particular printer or other device.

(a) Observer

Reduce the coupling between objects that produce information and objects that

need to examine them. The observed object does not need to know the actual

identity of the observers. Examples are views in MVC architectures.

(b) Interning

Ensures that there is only one copy of each abstract value of a class stored in the

system. Avoids the costs of constructing multiple copies and the storage and

garbage collection expenses of managing them. Also can allow faster comparison of

abstract values using == identity tests instead of equals(). Examples are

interning strings or Boolean values to avoid multiple copies.

(c) Visitor

Provides a standard way to traverse a hierarchical data structure with the correct

method being used to process each node in the structure depending on its actual

type. There are many examples such as traversals of abstract syntax trees in

compilers, processing structured documents, and so on.

(d) Factory

Hides details of object creation from client code. Examples are code that can

operate on specialized representations such as sparse or dense matrices. We would

like to isolate the choice of representation to Factory methods or objects so the rest

of the code is independent of these decisions.

Have a great winter break! See you in January!!

