University of Washington
 CSE 331 Software Design \& Implementation Spring 2013

 Midterm exam

 Midterm exam}

Wednesday, April 24, 2013

Name: Solutions
Section: \qquad
CSE Net ID (username): \qquad
UW Net ID (username): \qquad

This exam is closed book, closed notes. You have $\mathbf{5 0}$ minutes to complete it. It contains 21 questions and 9 pages (including this one), totaling 100 points. Before you start, please check your copy to make sure it is complete. Turn in all pages, together, when you are finished. Write your initials on the top of $\boldsymbol{A L L}$ pages (in case a page gets separated during test-taking or grading).

Please write neatly; we cannot give credit for what we cannot read.
Good luck!

Page	Max	Score
2	16	
3	12	
4	16	
5	8	
6	14	
7	14	
8	20	
Total	100	

1 True/False

(2 points each) Circle the correct answer. T is true, F is false.

1. \mathbf{T} / \mathbf{F} There may exist two logically distinct weakest preconditions A and B for a given bit of Java code. (Logically distinct means that A and B are not just different ways of writing exactly the same logical formula.)
2. \mathbf{T} / \mathbf{F} There may exist two logically distinct loop invariants $L I_{1}$ and $L I_{2}$ that enable proving a loop correct, where $L I_{1} \Rightarrow L I_{2}$.
3. \mathbf{T} / \mathbf{F} There may exist two logically distinct loop invariants $L I_{1}$ and $L I_{2}$ that enable proving a loop correct, where $L I_{1}$ and $L I_{2}$ are incomparable, that is $L I_{1} \nRightarrow L I_{2}$ and also $L I_{2} \nRightarrow L I_{1}$.
4. \mathbf{T} / \mathbf{F} There may exist two distinct decrementing functions that enable proving a given loop terminates.
5. \mathbf{T} / \mathbf{F} When the loop terminates, the decrementing function is 0 .
6. \mathbf{T} / \mathbf{F} When the decrementing function is 0 , the loop terminates.
7. \mathbf{T} / \mathbf{F} An implementer has the responsibility to implement all behaviors permitted by a specification.
A specification can be underconstrained - it could permit multiple possible behaviors. Think of the implementation's behavior as a subset of the specification's behavior - this perspective is natural with the transition relation view.
8. \mathbf{T} / \mathbf{F} You can tell by looking at a test case whether it was written using a black-box or a clear-box testing methodology.

Consider the following code for an add method of a collection class:

```
public void add(E element) {
    if (element == null) {
        throw new IllegalArgumentException();
    }
    // do things that add element to the collection
}
```

For each of the following specifications, indicate whether it is a valid specification for this code (T) or not (F).
9. \mathbf{T} / \mathbf{F}

```
@requires nothing
@modifies this
@effects adds element to this collection
```

10. \mathbf{T} / \mathbf{F}
@requires nothing
Othrows IllegalArgumentException when element is null
@modifies this
@effects adds element to this collection
11. \mathbf{T} / \mathbf{F}
@requires element is not null
@modifies this
@effects adds element to this collection
12. \mathbf{T} / \mathbf{F}
@requires element is not null
@throws IllegalArgumentException if element is null
@modifies this
@effects adds element to this collection
13. (4 points) Which of the above specifications do you think is best? Write its number, and write a sentence of justification.
14. Whether a value is null is something that is easy for a client to reason about or to check at run time. If a client knows that the argument is non-null, then the client shouldn't be forced to write a try. . catch block, which is bulky and ugly.
The answer 10 is also acceptable, if you specifically note that IllegalArgumentException is a non-checked exception so that you get the same benefits as with 11.
Note that this question is about the specifications, not about the implementation. A (weak!) advantage of 10 could be that if the client wanted to throw an IllegalArgumentException anyway, this specification would avoid the need for the client to do a null test.

2 Multiple choice

(2 points per subquestion) For each part of each question, circle the single best choice from among those in curly braces.
14. Suppose you have two correct implementations P1 and P2 of the same spec.
(a) A correct clear-box test written with P1 in mind $\{$ will / might / won't $\}$ pass when run on P2.
(b) A correct black-box test written with P1 in mind \{ will / might / won't \} pass when run on P2.
15. Suppose specification S 1 is stronger than specification $\mathrm{S} 2, \mathrm{P} 1$ is a correct implementation of S 1 , and P2 is a correct implementation of S2.
(a) Suppose P1 passes test T1 and P2 passes test T2. P2 \{ will / might / won't \} pass T1.
(b) Suppose T 1 is a valid test of S 1 , and T 2 is a valid test of S2. P1 \{ will / might / won't $\}$ pass T2.
(c) Suppose T1 is a valid test of S1, and T2 is a valid test of S2. P2 \{ will / might / won't $\}$ pass T1.
16. (6 points) Assume that the following propositions are true:

$$
\begin{gathered}
\{b\} \text { mycode }\{y\} \\
a \Rightarrow b \\
b \Rightarrow c \\
x \Rightarrow y \\
y \Rightarrow z
\end{gathered}
$$

Circle all of the following that must be true:
(a) $\{a\}$ mycode $\{y\}$
(b) $\{c\}$ mycode $\{y\}$
(c) $\{b\}$ mycode $\{x\}$
(d) $\{b\}$ mycode $\{z\}$
17. (4 points) Order the following assertions from strongest to weakest:
(a) x is even and $y=x+1$
(b) y is not even
(c) x is even and y is odd
(d) $\mathrm{x}=10$ and $\mathrm{y}=11$

Answer: $\boldsymbol{d}, \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{b}$
18. (4 points) Make a true statement by filling in each blank with one of the words "abstract", "concrete", "derived", "implementation", and "specification":
A derived field can be computed from one or more specification fields.

3 Code reasoning

19. (14 points) Prove that the trailingZeros procedure returns a correct answer, assuming it terminates.

Hint: try thinking of -882340000 as $-88234 * 10^{4}$. Note that $-88234 \% 10 \neq 0$.

```
/**
    * Requires: x != 0
    * Returns the number of trailing zeros of x -- that is, the number of 0s at the
    * end of the string representation of x. For example:
    * trailingZeros(1) == 0
    * trailingZeros(10) == 1
    * trailingZeros(100) == 2
    * trailingZeros(29831) == 0
    * trailingZeros(-882340000) == 4
    */
public static int trailingZeros(int x) {
        int zeros = 0;
        while (x % 10 == 0) {
            x = x/10;
            zeros = zeros + 1;
        }
        return zeros;
}
```

The proof has four parts.
(a) Define the loop invariant:

$$
\text { LI }=\text { x_pre }=x * 10^{\wedge} \text { zeros }
$$

(b) Show the loop invariant is established at the begining of the loop:

```
// { x = xpre }
int zeros = 0;
// { x = xpre & zeros = 0 }
// { LI: xpre = x*10^zeros }
```

(c) Show the loop invariant is preserved by the loop:

```
{ LI & predicate } body { LI }
while (x % 10 == 0) {
    // { xpre = x*10^zeros & x%10=0} => { xpre = (x/10)*10^(zeros+1) }
    x = x/10;
    // { xpre = (x)*10^(zeros+1) }
    zeros = zeros + 1;
    // { xpre = (x)*10^(zeros) }
}
```

(d) Show the loop invariant establishes the postcondition:

```
LI && ! predicate => post
```

In our case, LI \&\& ! predicate is exactly the postcondition.
20. (14 points) Prove that the trailingZeros procedure terminates. It's the same procedure as in problem 19.

```
/**
    * Requires: x != 0
    * Returns the number of trailing zeros of x -- the number of 0s at the
    * end of the string representation of an integer. For example:
    * trailingZeros(1) == 0
    * trailingZeros(10) == 1
    * trailingZeros(100) == 2
    * trailingZeros(29831) == 0
    * trailingZeros(-882340000) == 4
    */
public static int trailingZeros(int x) {
    int zeros = 0;
    while (x % 10 == 0) {
        x = x/10;
        zeros = zeros + 1;
    }
        return zeros;
}
```

The proof has three parts. We show two possible solutions, D_{1} and D_{2}.
(a) Define a decrementing function that yields a non-negative value:
$D_{1}(x)=\left\lfloor\log _{10}|x|\right\rfloor=$ one less than number of digits in representation of x
$D_{2}(x)=$ number of trailing 0 s in representation of x
(b) Show that the decrementing function's value is decreased by each iteration of the loop:

$$
\begin{aligned}
& \{\mathrm{x}=\mathrm{x} \text { pre } \wedge \mathrm{x} \bmod 10=0\} \\
& \mathrm{x}=\mathrm{x} / 10 ; \\
& \text { zeros }=\text { zeros }+1 ; \\
& \left\{\mathrm{x}=\mathrm{xpre} / 10 \Rightarrow D_{1}(\mathrm{x})=D_{1}(\text { xpre })-1\right\} \\
& \left\{\mathrm{x}=\mathrm{x} \text { pre } / 10 \Rightarrow D_{2}(\mathrm{x})=D_{2}(\text { xpre })-1\right\}
\end{aligned}
$$

(c) Show that if the decrementing function is zero, then the loop terminates:

$$
\begin{aligned}
D_{1}(x)=0 & \Rightarrow 1 \leq x \leq 9(\text { because } x \neq 0) \\
& \Rightarrow x \bmod 10 \neq 0 \\
& \Rightarrow \text { loop condition is false, so loop terminates } \\
D_{2}(x)=0 & \Rightarrow x \bmod 10 \neq 0 \text { (because } x \neq 0) \\
& \Rightarrow \text { loop condition is false, so loop terminates }
\end{aligned}
$$

21. (20 points) Consider the IntMap interface and (unrelated) IntStack class from page 9.

Willy Wazoo wants to write his own implementation for IntMap, but the only data structure he knows how to use is an IntStack! So he started out like this before he got stuck:

```
class WillysIntMap implements IntMap {
    // Represents the IntMap
    private IntStack theRep;
}
```

Help Willy write a rep invariant and abstraction function for his implementation. Don't change his representation. Do not write the implementation itself. It must be possible to implement IntMap using the rep invariant and abstraction function, but don't worry about the efficiency of the implementation. If you don't see how to implement IntMap, answer the questions as well as you can without regard for the implementation.
(a) Rep invariant:

The rep invariant has 3 parts:
i. theRep \neq null
ii. Any of:

- theRep.stack.Size() \% $2=0$
- |theRep.stack| is even
iii. Any of:
- $\forall i \neq j, 0 \leq i<\mid$ theRep.stack $|/ 2,0 \leq j<|$ theRep.stack| $/ 2$:

$$
\text { theRep.stack }[i * 2] \neq \text { theRep.stack }[j * 2]
$$

- There are no duplicates in $\{$ theRep.stack[i*2]:0 $0 \leq i<\mid$ theRep.stack $\mid / 2\}$

No credit for answers that mention the abstraction. A rep invariant should never mention the abstraction.
(b) Abstraction function:

Recall that the abstraction function maps the representation to the abstract value; its signature is:

AF (Rep) $=$ Abstract value
In our case, the signature is
AF(WillysIntMap) $=$ IntMap
Thus, the solution is:
AF $(w)=$ IntMap m such that
m.pairs $=\{\langle w$. theRep.stack[i*2], w.theRep.stack[i*2+1] $\rangle: 0 \leq i<\mid$ theRep.stack $\mid / 2\}$

No credit for answers that mention (concrete or abstract) operations. The abstraction function maps data to data. By contrast, a proof of correctness of the implementation would utilize both the abstraction function and facts about the $A D T$ specification, which specifies the operations.

You may tear off this page if you wish. You do not need to turn it in.

```
/** An IntMap is a mapping from integers to integers.
    * It implements a subset of the functionality of Map<int,int>.
    * All operations are exactly as specified in the documentation for Map.
    *
    * IntMap can be thought of as a set of key-value pairs:
    *
    * @specfield pairs == { <k1, v1>, <k2, v2>, <k3, v3>, ... }
    */
interface IntMap {
    /** Associates the specified value with the specified key in this map. */
    bool put(int key, int val);
    /** Removes the mapping for the key from this map if it is present. */
    int remove(int key);
    /** Returns true if this map contains a mapping for the specified key. */
    bool containsKey(int key);
    /** Returns the value to which the specified key is mapped, or O if this
        * map contains no mapping for the key. */
    int get(int key);
}
/**
    * An IntStack represents a stack of ints.
    * It implements a subset of the functionality of Stack<int>.
    * All operations are exactly as specified in the documentation for Stack.
    *
    * IntStack can be thought of as an ordered list of ints:
    *
    * @specfield stack : List<int>
    *
    * stack == [a_0, a_1, a_2, ..., a_k]
    */
interface IntStack {
    /** Pushes an item onto the top of this stack.
        * If stack_pre == [a_0, a_1, a_2, ..., a_(k-1), a_k]
        * then stack_post == [a_0, a_1, a_2, ..., a_(k-1), a_k, val].
        */
    void push(int val);
    /**
        * Removes the int at the top of this stack and returns that int.
        * If stack_pre == [a_0, a_1, a_2, ..., a_(k-1), a_k]
        * then stack_post == [a_0, a_1, a_2, ..., a_(k-1)]
        * and the return value is a_k.
        */
    int pop();
}```

