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Initials: Solutions 1 TRUE/FALSE

1 True/False

(2 points each) Circle the correct answer. T is true, F is false.

1. T / F There may exist two logically distinct weakest preconditions A and B for a given
bit of Java code. (Logically distinct means that A and B are not just different ways of writing
exactly the same logical formula.)

2. T / F There may exist two logically distinct loop invariants LI1 and LI2 that enable
proving a loop correct, where LI1 ⇒ LI2.

3. T / F There may exist two logically distinct loop invariants LI1 and LI2 that enable
proving a loop correct, where LI1 and LI2 are incomparable, that is LI1 6⇒ LI2 and also
LI2 6⇒ LI1.

4. T / F There may exist two distinct decrementing functions that enable proving a given
loop terminates.

5. T / F When the loop terminates, the decrementing function is 0.

6. T / F When the decrementing function is 0, the loop terminates.

7. T / F An implementer has the responsibility to implement all behaviors permitted by a
specification.

A specification can be underconstrained — it could permit multiple possible be-
haviors. Think of the implementation’s behavior as a subset of the specification’s
behavior — this perspective is natural with the transition relation view.

8. T / F You can tell by looking at a test case whether it was written using a black-box or
a clear-box testing methodology.
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Consider the following code for an add method of a collection class:

public void add(E element) {
if (element == null) {

throw new IllegalArgumentException();
}
// do things that add element to the collection

}

For each of the following specifications, indicate whether it is a valid specification for this
code (T) or not (F).

9. T / F

@requires nothing
@modifies this
@effects adds element to this collection

10. T / F

@requires nothing
@throws IllegalArgumentException when element is null
@modifies this
@effects adds element to this collection

11. T / F

@requires element is not null
@modifies this
@effects adds element to this collection

12. T / F

@requires element is not null
@throws IllegalArgumentException if element is null
@modifies this
@effects adds element to this collection

13. (4 points) Which of the above specifications do you think is best? Write its number, and
write a sentence of justification.

11. Whether a value is null is something that is easy for a client to reason about
or to check at run time. If a client knows that the argument is non-null, then the
client shouldn’t be forced to write a try. . . catch block, which is bulky and ugly.

The answer 10 is also acceptable, if you specifically note that IllegalArgumentException
is a non-checked exception so that you get the same benefits as with 11.

Note that this question is about the specifications, not about the implementa-
tion. A (weak!) advantage of 10 could be that if the client wanted to throw an
IllegalArgumentException anyway, this specification would avoid the need for the
client to do a null test.
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2 Multiple choice

(2 points per subquestion) For each part of each question, circle the single best choice
from among those in curly braces.

14. Suppose you have two correct implementations P1 and P2 of the same spec.

(a) A correct clear-box test written with P1 in mind { will / might / won’t } pass when
run on P2.

(b) A correct black-box test written with P1 in mind { will / might / won’t } pass
when run on P2.

15. Suppose specification S1 is stronger than specification S2, P1 is a correct implementation of
S1, and P2 is a correct implementation of S2.

(a) Suppose P1 passes test T1 and P2 passes test T2. P2 { will / might / won’t } pass
T1.

(b) Suppose T1 is a valid test of S1, and T2 is a valid test of S2. P1 { will / might /
won’t } pass T2.

(c) Suppose T1 is a valid test of S1, and T2 is a valid test of S2. P2 { will / might /
won’t } pass T1.

16. (6 points) Assume that the following propositions are true:

{b} mycode {y}
a⇒ b

b⇒ c

x⇒ y

y ⇒ z

Circle all of the following that must be true:

(a) {a} mycode {y}

(b) {c} mycode {y}
(c) {b} mycode {x}

(d) {b} mycode {z}
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17. (4 points) Order the following assertions from strongest to weakest:

(a) x is even and y = x + 1

(b) y is not even

(c) x is even and y is odd

(d) x = 10 and y = 11

Answer: d, a, c, b

18. (4 points) Make a true statement by filling in each blank with one of the words “abstract”,
“concrete”, “derived”, “implementation”, and “specification”:

A derived field can be computed from one or more specification fields.
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3 Code reasoning

19. (14 points) Prove that the trailingZeros procedure returns a correct answer, assuming it
terminates.

Hint: try thinking of -882340000 as -88234 * 104. Note that -88234 % 10 6= 0.

/**

* Requires: x != 0

* Returns the number of trailing zeros of x -- that is, the number of 0s at the

* end of the string representation of x. For example:

* trailingZeros(1) == 0

* trailingZeros(10) == 1

* trailingZeros(100) == 2

* trailingZeros(29831) == 0

* trailingZeros(-882340000) == 4

*/

public static int trailingZeros(int x) {

int zeros = 0;

while (x % 10 == 0) {

x = x/10;

zeros = zeros + 1;

}

return zeros;

}

The proof has four parts.

(a) Define the loop invariant:

LI = x_pre = x * 10^zeros

(b) Show the loop invariant is established at the begining of the loop:
// { x = xpre }

int zeros = 0;

// { x = xpre & zeros = 0 }

// { LI: xpre = x*10^zeros }

(c) Show the loop invariant is preserved by the loop:

{ LI & predicate } body { LI }

while (x % 10 == 0) {

// { xpre = x*10^zeros & x%10=0} => { xpre = (x/10)*10^(zeros+1) }

x = x/10;

// { xpre = (x)*10^(zeros+1) }

zeros = zeros + 1;

// { xpre = (x)*10^(zeros) }

}

(d) Show the loop invariant establishes the postcondition:

LI && ! predicate => post

In our case, LI && ! predicate is exactly the postcondition.
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20. (14 points) Prove that the trailingZeros procedure terminates. It’s the same procedure as
in problem 19.

/**
* Requires: x != 0
* Returns the number of trailing zeros of x -- the number of 0s at the
* end of the string representation of an integer. For example:
* trailingZeros(1) == 0
* trailingZeros(10) == 1
* trailingZeros(100) == 2
* trailingZeros(29831) == 0
* trailingZeros(-882340000) == 4
*/
public static int trailingZeros(int x) {

int zeros = 0;
while (x % 10 == 0) {

x = x/10;
zeros = zeros + 1;

}
return zeros;

}

The proof has three parts. We show two possible solutions, D1 and D2.

(a) Define a decrementing function that yields a non-negative value:
D1(x) = blog10 |x|c = one less than number of digits in representation of x
D2(x) = number of trailing 0s in representation of x

(b) Show that the decrementing function’s value is decreased by each iteration of the loop:

{x = xpre ∧ x mod 10 = 0}
x = x/10;
zeros = zeros + 1;
{x = xpre/10 ⇒ D1(x) = D1(xpre)− 1}
{x = xpre/10 ⇒ D2(x) = D2(xpre)− 1}

(c) Show that if the decrementing function is zero, then the loop terminates:

D1(x) = 0 ⇒ 1 ≤ x ≤ 9 (because x 6= 0)
⇒ x mod 10 6= 0
⇒ loop condition is false, so loop terminates

D2(x) = 0 ⇒ x mod 10 6= 0 (because x 6= 0)
⇒ loop condition is false, so loop terminates
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21. (20 points) Consider the IntMap interface and (unrelated) IntStack class from page 9.

Willy Wazoo wants to write his own implementation for IntMap, but the only data structure
he knows how to use is an IntStack! So he started out like this before he got stuck:

class WillysIntMap implements IntMap {

// Represents the IntMap
private IntStack theRep;

}

Help Willy write a rep invariant and abstraction function for his implementation. Don’t
change his representation. Do not write the implementation itself. It must be possible to
implement IntMap using the rep invariant and abstraction function, but don’t worry about
the efficiency of the implementation. If you don’t see how to implement IntMap, answer the
questions as well as you can without regard for the implementation.

(a) Rep invariant:
The rep invariant has 3 parts:

i. theRep 6= null

ii. Any of:

• theRep.stack.Size() % 2 == 0

• |theRep.stack| is even

iii. Any of:

• ∀i 6= j, 0 ≤ i < |theRep.stack|/2, 0 ≤ j < |theRep.stack|/2 :
theRep.stack[i*2] 6= theRep.stack[j*2]

• There are no duplicates in {theRep.stack[i*2] : 0 ≤ i < |theRep.stack|/2}
No credit for answers that mention the abstraction. A rep invariant should
never mention the abstraction.

(b) Abstraction function:
Recall that the abstraction function maps the representation to the abstract
value; its signature is:

AF(Rep) = Abstract value
In our case, the signature is

AF(WillysIntMap) = IntMap

Thus, the solution is:

AF(w) = IntMap m such that
m.pairs = {〈w.theRep.stack[i*2], w.theRep.stack[i*2+1]〉 : 0 ≤ i < |theRep.stack|/2}
No credit for answers that mention (concrete or abstract) operations. The
abstraction function maps data to data. By contrast, a proof of correctness
of the implementation would utilize both the abstraction function and facts
about the ADT specification, which specifies the operations.
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You may tear off this page if you wish. You do not need to turn it in.

/** An IntMap is a mapping from integers to integers.
* It implements a subset of the functionality of Map<int,int>.
* All operations are exactly as specified in the documentation for Map.
*
* IntMap can be thought of as a set of key-value pairs:
*
* @specfield pairs == { <k1, v1>, <k2, v2>, <k3, v3>, ... }
*/
interface IntMap {
/** Associates the specified value with the specified key in this map. */
bool put(int key, int val);
/** Removes the mapping for the key from this map if it is present. */
int remove(int key);
/** Returns true if this map contains a mapping for the specified key. */
bool containsKey(int key);
/** Returns the value to which the specified key is mapped, or 0 if this
* map contains no mapping for the key. */
int get(int key);

}

/**
* An IntStack represents a stack of ints.
* It implements a subset of the functionality of Stack<int>.
* All operations are exactly as specified in the documentation for Stack.
*
* IntStack can be thought of as an ordered list of ints:
*
* @specfield stack : List<int>
*
* stack == [a_0, a_1, a_2, ..., a_k]
*/
interface IntStack {

/** Pushes an item onto the top of this stack.
* If stack_pre == [a_0, a_1, a_2, ..., a_(k-1), a_k]
* then stack_post == [a_0, a_1, a_2, ..., a_(k-1), a_k, val].
*/
void push(int val);

/**
* Removes the int at the top of this stack and returns that int.
* If stack_pre == [a_0, a_1, a_2, ..., a_(k-1), a_k]
* then stack_post == [a_0, a_1, a_2, ..., a_(k-1)]
* and the return value is a_k.
*/
int pop();
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