
Design Patterns
…live and in action!

Arranged by Krysta Yousoufian for CSE 331, 3/8/2012

With material from Hal Perkins, David Notkin, Michael Ernst,

Marty Stepp, and Joshua Bloch (Effective Java)

MVC
• One of the most well-known patterns

• Review it before interviews (especially at web

companies)

More Common Patterns
• Recall from lecture…

• Creational
o Create objects without calling constructor directly

o Singleton: allow only one instance

o Factory: hide constructors

o Prototype: “cloneable” objects

• Structural (wrappers)
o Interact with the “important“ class through a wrapper class

o Adapter: different interface, same functionality

o Decorator: same interface, different functionality

o Proxy: same interface, same functionality

• Behavorial
o Interface for communication between objects

o Visitor: traverse a data structure

Singleton
• One shared instance of a class

• When useful
o Maintaining global state; coordinating among objects or threads

o Often lower-level tasks (e.g. hardware interaction)

• When not useful
o Need to store state/data specific to each use (instance fields)

• Controversial
o Global  hides dependencies, hard to test

o Overused

o Good tool to have, but only use if it’s the right tool (get a second

opinion!)

• Examples: logger, window manager

Implementing Singleton
• Private constructor

• Several options(Effective Java pp. 18+)
o One private static instance, accessed with getInstance()

• Pros: flexibility – could reimplement getInstance() to no longer

be Singleton

o One publicly accessible static instance

• Pros: clarity – obvious that you’re using a shared copy

o Enum

• Pros: safer (harder to break Singleton), provides serialization

• But not how Enum is meant to be used

Singleton Demo
FileServer / Logger

Factory
• Get new object by calling non-constructor

(getInstance(), valueOf(), …)
o May create a new object or may reuse an old one

• Advantages (Effective Java, pg. 5)
o Can reuse objects

o Can return objects of subclasses

o More descriptive naming than constructors

Factory Demo
GameFactory / GameRoom

Adapter
• Different interface, same functionality

• Use: translate interface to be compatible with a

different object

Demo: TicTacToe / GameRoom

Strategy
• Problem: We want to generalize behavior of one

part of our app.

o Example: Layout of components within

containers.

o Example: Ways of sorting to arrange data.

o Example: Computer game player AI algorithms.

Poor Solutions
• Boolean flags or many set methods to enable various

algorithms.
myContainer.useFlow(); game.playerDifficulty(3);

• Lots of if statements in our app to choose between

algorithms.
if (abc) { mergeSort(data); }

else if (xyz) { bubbleSort(data); }

• Rewriting entire model classes just to change the

algorithm.
FlowContainer, BorderContainer, ..., EasyPlayer,

 HardPlayer

Strategy Pattern
• strategy: An algorithm separated from the object

that uses it, and encapsulated as its own object.

o Each strategy implements one specific behavior; one

implementation of how to solve the same problem.

o Separates algorithm for behavior from object that wants to
act.

o Allows changing an object's behavior dynamically without

extending or changing the object itself.

Strategy Demo
• RockPaperScissors / GameRoom

