
Java Graphics
* and an unrelated bit about anonymous classes

Krysta Yousoufian

CSE 331 Section, 3/1/2012

With material from Marty Stepp

Custom Graphics

 Sometimes you need to draw custom

graphics in your GUI

◦ Displaying an image

◦ Drawing geometric shapes and lines

 For this, you need a custom component

◦ Often called a canvas (not to be confused
with the Canvas class)

◦ Override paintComponent to tell Java

how to render it

Creating a Canvas

 Write a class that extends JComponent

 Override its paintComponent method
 public void paintComponent(Graphics g)

 In paintComponent:

◦ First, call super.paintComponent

◦ Then, call Graphics methods to draw what

you want

◦ (Actually, often want Graphics2D … more

later)

Graphics methods

 drawImage

 drawLine

 drawOval

 drawRect

 setColor

 etc…

http://docs.oracle.com/javase/6/docs/api/java

/awt/Graphics.htm

http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.htm
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.htm
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.htm

Example

 SimpleCanvas.java

Repainting

 Want to redraw the canvas in response

to user input

 Can’t call paintComponent() without a

reference to its graphics object

 Instead, call the canvas’s built-in repaint()

method

◦ Internally calls paintComponent()

Graphics2D

 Graphics2D: subclass of Graphics

 More powerful

 Graphics objects in your canvas are really

Graphics2D objects

 Simply cast Graphics object to

Graphics2D:

public void paintComponent(Graphics g)

{

 Graphics2D g2d = (Graphics2D)g;

Graphics2D methods

 http://docs.oracle.com/javase/6/docs/api/ja

va/awt/Graphics2D.html

http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics2D.html
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics2D.html
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics2D.html

Drawing images

 Use the drawImage method in Graphics

 Load the image into an Image object:

 Image img =

 Toolkit.getDefaultToolkit()

 .getImage(IMAGE_PATH);

 Pass Image object into Graphics.drawImage:

 g.drawImage(img, …)

Example

 ImageCanvas.java

ANONYMOUS CLASSES

And now, for something completely different…

Motivation

 Need a small, single-use class to pass into

a method

◦ Usually class has one short method

◦ addActionListener(ActionListener listener)

 Why not write an ordinary inner class?

◦ Less readable - separates action from where

it’s used

◦ Clutters up top-level class

Implementation

 Where you would normally put a

reference to a variable, you write:
new SomeClassName() {

 public void someMethod() {

 // your implementation here

 }

}

where SomeClassName is an abstract class

or interface to extend/implement

Example

 Timer takes a TimerTask to schedule:
public void schedule(TimerTask task,

 long delay)

timer.schedule(new TimerTask() {

 public void run() {

 System.out.println(“Time’s up!”);

 }

}, 1000);

Caveats

 Better or worse than regular inner classes? It
depends

 Anonymous classes can make code cleaner and
easier to follow

 Or they can have the opposite effect

 Good for classes which are…

◦ Very small (only a few lines, usually one method)

◦ Only used once in the program

 Bad for…

◦ Classes of any length (i.e. most classes)

◦ Classes for which an object is constructed more than
once (need to redefine anonymous class every time)

Demo

 AnonClassGUI.java

