
Java Graphics
* and an unrelated bit about anonymous classes

Krysta Yousoufian

CSE 331 Section, 3/1/2012

With material from Marty Stepp

Custom Graphics

 Sometimes you need to draw custom

graphics in your GUI

◦ Displaying an image

◦ Drawing geometric shapes and lines

 For this, you need a custom component

◦ Often called a canvas (not to be confused
with the Canvas class)

◦ Override paintComponent to tell Java

how to render it

Creating a Canvas

 Write a class that extends JComponent

 Override its paintComponent method
 public void paintComponent(Graphics g)

 In paintComponent:

◦ First, call super.paintComponent

◦ Then, call Graphics methods to draw what

you want

◦ (Actually, often want Graphics2D … more

later)

Graphics methods

 drawImage

 drawLine

 drawOval

 drawRect

 setColor

 etc…

http://docs.oracle.com/javase/6/docs/api/java

/awt/Graphics.htm

http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.htm
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.htm
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics.htm

Example

 SimpleCanvas.java

Repainting

 Want to redraw the canvas in response

to user input

 Can’t call paintComponent() without a

reference to its graphics object

 Instead, call the canvas’s built-in repaint()

method

◦ Internally calls paintComponent()

Graphics2D

 Graphics2D: subclass of Graphics

 More powerful

 Graphics objects in your canvas are really

Graphics2D objects

 Simply cast Graphics object to

Graphics2D:

public void paintComponent(Graphics g)

{

 Graphics2D g2d = (Graphics2D)g;

Graphics2D methods

 http://docs.oracle.com/javase/6/docs/api/ja

va/awt/Graphics2D.html

http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics2D.html
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics2D.html
http://docs.oracle.com/javase/6/docs/api/java/awt/Graphics2D.html

Drawing images

 Use the drawImage method in Graphics

 Load the image into an Image object:

 Image img =

 Toolkit.getDefaultToolkit()

 .getImage(IMAGE_PATH);

 Pass Image object into Graphics.drawImage:

 g.drawImage(img, …)

Example

 ImageCanvas.java

ANONYMOUS CLASSES

And now, for something completely different…

Motivation

 Need a small, single-use class to pass into

a method

◦ Usually class has one short method

◦ addActionListener(ActionListener listener)

 Why not write an ordinary inner class?

◦ Less readable - separates action from where

it’s used

◦ Clutters up top-level class

Implementation

 Where you would normally put a

reference to a variable, you write:
new SomeClassName() {

 public void someMethod() {

 // your implementation here

 }

}

where SomeClassName is an abstract class

or interface to extend/implement

Example

 Timer takes a TimerTask to schedule:
public void schedule(TimerTask task,

 long delay)

timer.schedule(new TimerTask() {

 public void run() {

 System.out.println(“Time’s up!”);

 }

}, 1000);

Caveats

 Better or worse than regular inner classes? It
depends

 Anonymous classes can make code cleaner and
easier to follow

 Or they can have the opposite effect

 Good for classes which are…

◦ Very small (only a few lines, usually one method)

◦ Only used once in the program

 Bad for…

◦ Classes of any length (i.e. most classes)

◦ Classes for which an object is constructed more than
once (need to redefine anonymous class every time)

Demo

 AnonClassGUI.java

