
UNIT TESTING
Krysta Yousoufian

CSE 331 Section

Jan. 19, 2012

With material from Marty Stepp, David Notkin, and The

Pragmatic Programmer

Plan for today / Thursday

• HW3

• Background on unit testing

• JUnit mechanics

• JUnit best practices

Background
What unit testing is and why it matters

Kinds of Testing

• Unit testing: test each module of a program in isolation

• “Module” usually means one class

• Integration testing

• Do the modules “play well” together?

• Validation testing

• Does the system do what the client wants and needs?

• Aside: “what the client wants” != “what the client asked for”

• System testing

• Overall functionality and performance of the system

• Usable, meets requirements, good performance, etc.

Unit Testing

• Unit testing: test each module of a program in isolation

• “Module” usually means one class

• Helps to catch errors at their source

• For Java, we use the JUnit library

• Framework for automated testing

• Can quickly run lots (1000s?!) of tests and see which failed

• The basic idea:

• For a given class Foo, create another class FooTest to test it

• Write “test case” methods in FooTest for behavior of Foo

• Each method expects certain results and passes/fails accordingly

Test-Driven Development

• Write the tests before you write the coding being tested!

• Traditional development model for a module Foo

1. Design: specify Foo’s public interface

2. Implement: fill in those methods

3. Test: write & run unit tests

Test-Driven Development

• Write the tests before you write the coding being tested!

• Traditional development model for a module Foo

1. Design: specify Foo’s public interface

2. Implement: fill in those methods

3. Test: write & run unit tests
FEATURE

REQUEST

Test-Driven Development

• Write the tests before you write the coding being tested!

• Traditional development model for a module Foo

1. Design: specify Foo’s public interface

2. Implement: fill in those methods

3. Test: write & run unit tests

“write tests or

add more

features?”

FEATURE

REQUEST

Test-Driven Development

• Write the tests before you write the coding being tested!

• Traditional development model for a module Foo

1. Design: specify Foo’s public interface

2. Implement: fill in those methods

3. Test: write & run unit tests

“looks ok to

me…”

“write tests or

add more

features?”

FEATURE

REQUEST

Test-Driven Development

• Write the tests before you write the coding being tested!

• Traditional development model for a module Foo

1. Design: specify Foo’s public interface

2. Implement: fill in those methods

3. Test: write & run unit tests

“looks ok to

me…”

“write tests or

add more

features?”

FEATURE

REQUEST

DEADLINE!

Test-Driven Development

• Write the tests before you write the coding being tested!

• Traditional development model for a module Foo

1. Design: specify Foo’s public interface

2. Implement: fill in those methods

3. Test: write & run unit tests

 

Test-Driven Development

• Write the tests before you write the coding being tested!

• Test-driven development model

1. Design: specify Foo’s public interface

2. Test: write unit tests against that interface

o Tests will fail initially

3. Implement: fill in methods and verify that tests now pass

• #2 and #3 are often per-method: choose a method, write tests for it,

implement it, repeat

Benefits of Test-Driven Development

• Emphasizes testing

• Not squeezed against the deadline

• Likely to produce better test coverage

• Clarifies understanding of how code should work

• Get to “try out the interface before you commit to it”

• Identify things you might have overlooked, e.g. boundary cases

• This way, you only have to write the code once

• You’ll practice test-driven development on HW3

JUnit Semantics
How to write a technically correct JUnit test

A JUnit test class

import org.junit.*;

import static org.junit.Assert.*;

public class name {
 ...

 @Test

 public void name() { // a test case method
 ...

 }

}

• A method with @Test is flagged as a JUnit test case.

• All @Test methods run when JUnit runs your test class.

Verifying Behavior with Assertions

• Assertions: special JUnit methods

• Verifies that a value matches expectations
assertEquals(42, meaningOfLife());  fails if meaningOfLife() != 42

assertTrue(list.isEmpty());  fails if list.isEmpty() is false

• If the value isn’t what it should be, the test fails

• Test immediately terminates

• Other tests in the test class are still run as normal

• Results show details of failed tests

Using Assertions

assertTrue(test) fails if the boolean test is false

assertFalse(test) fails if the boolean test is true

assertEquals(expected, actual) fails if the values are not equal

assertSame(expected, actual) fails if the values are not the same (by ==)

assertNotSame(expected, actual) fails if the values are the same (by ==)

assertNull(value) fails if the given value is not null

assertNotNull(value) fails if the given value is null

• And others: http://www.junit.org/apidocs/org/junit/Assert.html

• Each method can also be passed a string to display if it fails:

• e.g. assertEquals("message", expected, actual)

http://www.junit.org/apidocs/org/junit/Assert.html

Let’s put it all together!

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Comment describes

what’s being tested

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Method name describes

what is being tested, too

(useful when reading list

of test results)

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Tells JUnit that this

method is a test to run

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Method names describe

function of each object

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Use assertion to check

expected results

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Message gives

details about the

test in case of

failure

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Expected value first,

actual value second

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

That’s it! Test is

short & sweet

Checking for Exceptions

• Verify that a method throws an exception when it should

• Place above method:
@Test(expected=IllegalArgumentException.class)

• Test passes if specified exception is thrown, fails otherwise

• Only time it’s OK to write a test with no asserts!

// Try to access the first item in an empty ArrayList

@Test(expected=IndexOutOfBoundsException.class)

 public void test() {

 List<String> list = new ArrayList<String>();

 list.get(0);

 }

Setup and Teardown

• Methods to run before/after each test case method is called:

 @Before

 public void name() { ... }

 @After

 public void name() { ... }

• Methods to run once before/after the entire test class runs:

 @BeforeClass

 public static void name() { ... }

 @AfterClass

 public static void name() { ... }

DRY (Don’t Repeat Yourself)

• JUnit tests are just regular Java code!

• Can declare fields for frequently-used values or constants

private static final String DEFAULT_NAME = “MickeyMouse”;

private static final User DEFAULT_USER =

 new User(“lazowska”, “Ed”, “Lazowska”);

• Can write helper methods, etc.
 private void eq(RatNum ratNum, String rep) {

 assertEquals(rep, ratNum.toString());

 }

 private BinaryTree getTree(int[] items) {

 // construct BinaryTree and add each element in items

 }

Unit Test Best Practices
How to craft well-written JUnit tests

#1: Keep tests small

• Ideally, each test only tests one “thing”

• One “thing” usually means one method under one input condition

• Low-granularity tests help you isolate bugs

• Tell you exactly what failed and what didn’t

• Only a few (likely one) assert statements per test

• Test halts after first failed assertion

• Don’t know whether later assertions would have failed

• Where possible, only test one method at a time

• Not always possible – but if you test x() using y(), try to test y()

in isolation in another test

• E.g. if you test add() using contains(), separately test

contains() before any items are added

What NOT to do

• IntArrayTest
(http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArr

ayTest.java)

• What’s wrong?

http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTest.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTest.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTest.java

What NOT to do

• IntArrayTest
(http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArr

ayTest.java)

• testIntArray tests way too many things

• Too many methods, array states

• Solution: break down by method being tested and/or state

of array
(http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTestBe

tter.java)

http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTest.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTest.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTest.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTestBetter.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTestBetter.java
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntArrayTestBetter.java

#2: Use descriptive asserts, test names

• When a test fails, JUnit tells you:

• Name of test method

• Message passed into failed assertion

• Expected and actual values of failed assertion

• The more descriptive this information is, the easier it is to

diagnose failures

• Avoid System.out.println()

• Want any diagnostic info to be captured by JUnit and associated

with that test method

#2: Use descriptive asserts, test names

• Test name: describe what’s being tested

• Good: “testAddDaysWithinMonth,” …

• Not so good: “testAddDays1,” “testAddDays2,” …

• Useless: “test1,” “test2,” …

• Overkill:

“testAddDaysOneDayThenThenFiveDaysThenNegativeFourDaysS

tartingOnJanuaryTwentySeventhAndMakeSureItRollsBackToJanua

ryAfterRollingToFebruary()”

#2: Use descriptive asserts, test names

• Assertions: take advantage of expected & actual values

• Make sure you have the right order:

 assertEquals(message, expected, actual)

• Use the right assert for the occasion:

assertEquals(expected, actual) instead of
assertTrue(expected == actual)

(why?)

assertTrue(b) instead of assertEquals(true, b)

(why?)

#2: Use descriptive asserts, test names

• Assertion message: contribute new information

• No need to repeat expected/actual values or info in test name

• e.g. details of what happened before the failure

Example:

 @Test

 public void test_addDays_wrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected, actual);

 }

#3: Choose the right tests

• Given a finite number of tests, want reasonable

confidence in an infinite number of inputs

• Input = initial state of object + parameter values + …

• Want to avoid redundancy but still test everything

• What tests do you choose? When do you stop?

• This is an art!

• Equivalence classes: inputs that you expect to cause the

same behavior

• Cause the same lines of code to execute, etc.

• If one input works correctly, expect all others in the

equivalence class to also work

#3: Choose the right tests

• For each method, ask: what are the equivalence classes?

• Items in a collection: none, one, many

• Write a test for each equivalence class

• Consider common input categories

• Math.abs(): negative, zero, positive values

• Consider boundary cases

• Inputs on the boundary between equivalence classes

• Person.isMinor(): age < 18, age == 18, age > 18

• Consider edge cases

• -1, 0, 1, empty list, arr.length, arr.length-1

• Consider error cases

• Empty list, null object

Other guidelines

• Test all methods
• Caveat: constructors don’t necessarily need explicit testing

• Keep tests simple – avoid complicated logic
• minimize if/else, loops, switch, etc.

• Don’t want to debug your tests!

• Tests should always have at least one assert
• Unless testing that an exception is thrown

• Simply testing that an exception is not thrown is not necessary

• assertTrue(true); doesn’t count!

• Tests should be isolated – not dependent on side effects
of other tests

• Use helper methods to factor out common operations
• E.g. setting up initial state of an object

Other guidelines

• Tests should be isolated

• Not dependent on side effects of other tests

• Should be able to run in any order

• Use helper methods to factor out common operations

• E.g. setting up initial state of an object

Example: IntStack

• http://www.cs.washington.edu/education/courses/cse331/12wi/section

/IntStack.html

• What tests should we write?

http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntStack.html
http://www.cs.washington.edu/education/courses/cse331/12wi/section/IntStack.html

Example: Date

• public Date(int year, int month, int day)

• public Date() // today

• public int getDay(), getMonth(), getYear()

• public void addDays(int days) // advances by days

• public int daysInMonth()

• public String dayOfWeek() // e.g. "Sunday"

• public boolean equals(Object o)

• public boolean isLeapYear()

• public void nextDay() // advances by 1 day

• public String toString()

• Come up with unit tests to check the following:
• That no Date object can ever get into an invalid state.

• That the addDays method works properly.

• It should be efficient enough to add 1,000,000 days in a call.

JUnit Summary

• Tests need failure atomicity (ability to know exactly what
failed).
• Each test should have a descriptive name.

• Assertions should have clear messages to know what failed.

• Write many small tests, not one big test.

• Test for expected errors / exceptions.

• Choose a descriptive assert method, not always
assertTrue.

• Choose representative test cases from equivalent input
classes.

• Avoid complex logic in test methods if possible.

• Use helpers, @Before to reduce redundancy between
tests.

