
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

Subtypes and Subclasses

(Slides by David Notkin and Mike Ernst)

1

Very quick recap: satisfies

• Procedural specification and implementations that satisfy
these specifications

– For specification S and program P, P satisfies S
iff

• Every behavior of P is permitted by S

• “The behavior of P is a subset of S”

• Abstract data type specification and implementations that
satisfy such specifications – more complicated, but the
same idea

• These are approaches for defining, reasoning about,
testing and implementing software that satisfy specific
expectations

2

Similarity

• Sometimes it is valuable to take advantage of

existing specifications and/or implementations to

develop a similar piece of software

• That is, we’d like to develop a similar artifact

(specification or implementation) not entirely from

scratch, but rather as a delta from the original

– A’ = A + A’

• Describing the differences and sharing the similarities

can simplify development, increase confidence in the

properties of the artifact, help in understanding the

problem space, etc.

3

Similarity in software development

• The field has many ways to exploit this notion of
similarity – examples include

– Procedures with parameters – share the
algorithm, differ in the data

– Object-oriented subclassing

– Object-oriented subtyping

– Monads in functional programming

– And many more…

• Just like similarity is confusing in the world, it can be
confusing – but very valuable – in software
development

4

These are related but

distinct; and the

distinctions are often

confusing and confused

Substitutability

• The notion of satisfiability was about whether an

implementation met the expectations of a

specification

• Substitutability will be the key issue in subtyping –

can one specification (and its satisfying

implementation) be substituted for another

specification (and its satisfying implementation)?

5

Subtyping and Substitutability

• Subtyping uses substitutability to express the “is-a”
relationship

– A circle is-a shape; a rhombus is-a shape

– A platypus is-a mammal; a mammal is-a
vertebrate animal

– A java.math.BigInteger is-a
java.lang.Number is-a java.lang.Object

• When a programmer declares B to be a subtype of A
that it means "every object that satisfies the
specification of B also satisfies the specification of A“

– Sometimes we call this a true subtype relationship

• see next slide

6

Be careful!!!!!

• We are still talking about specifications, not
implementations!

– java.math.BigInteger might share absolutely
positively no code at all with java.lang.Object

• Java subtypes/subclasses are not necessarily true
subtypes

– No type system, including Java’s, can determine
the behavioral properties that would be needed to
ensure this

• Details beyond 331

– Java subtypes that are not true subtypes are
confusing at best and dangerous at worst

7

Subclassing

• Subclassing uses inheritance to share code – take

advantage of the similarity of parts of the

implementation – enables incremental changes to

classes

• Every Java subclass is a Java subtype but is not

necessarily a true subtype

• Checking for true subtypes requires full specifications

(and deeper checking, again beyond the scope of

type systems)

8

Java subtypes

• Java types are defined by classes, interfaces,
and primitives

• B is Java subtype of A if there is a declared
relationship (B extends A; B implements A)

• Compiler checks that, for each corresponding
method in a Java subtype:
– same argument types

– compatible result types

– no additional declared exceptions

• Again: not the same as checking for a true subtype!
No semantic behavior is considered

9

Compiler guarantees

• Objects are guaranteed to be Java subtypes of their

declared type

– If a variable of declared (compile-time, static) type

T holds a reference to an object of actual (runtime,

dynamic) type T' then T' is a Java subtype of T

• Corollaries

– Objects always have implementations of the

methods specified by their declared type

– If all subtypes are true subtypes, then all objects

meet the specification of their declared type

• Rules out a huge class of bugs

10

Adding functionality

• Suppose we run a web store with a class for
Products …

class Product {

 private String title;

 private String description;

 private float price;

 public float getPrice() { return price; }

 public float getTax() { return getPrice()*0.05; }

 // ...

}

• ... and we decide we want another class for
Products that are on sale

11

We could cut-and-paste

class SaleProduct {

private String title;

private String description;

private float price;

private float factor;

public float getPrice() { return price*factor; }

public float getTax() { return getPrice() * 0.05;}

 //...

}

• Good idea? Bad idea? Why?

12

Inheritance makes small extensions small

• The code for the extension is in some sense

comparable in size to the extension

• It’s much better to do this:

class SaleProduct extends Product {

 private float factor;

 public float getPrice() {

 return super.getPrice()*factor;

 }

 //...

 }

13

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods

– Implementation: simpler maintenance, fix bugs once

– Specification: clients who understand the superclass

specification need only study novel parts of subclass

– Modularity: can ignore private fields and methods of

superclass (if properly defined)

– Differences are not buried under mass of similarities

• Ability to substitute new implementations

– Clients need not change their code to use new

subclasses

14

Subclassing can be misused

• Poor planning leads to muddled inheritance hierarchy

– Relationships may not match untutored intuition

• If subclass is tightly coupled with superclass

– Can depend on implementation details of superclass

– Changes in superclass can break subclass

• “fragile base class” problem

• Subtyping and implementation inheritance are orthogonal

– Subclassing gives you both

– Sometimes you just want one

– Subtyping is source of most benefits of subclassing

15

Every square is a rectangle

interface Rectangle {

 // effects: fits shape to given size

 // thispost.width = w, thispost.height = h

 void setSize(int w, int h);

}

interface Square implements Rectangle {…}

Which is the best option for Square.setSize()?

1.// requires: w = h

// effects: fits shape to given size

void setSize(int w, int h);

2.// effects: sets all edges to given size

void setSize(int edgeLength);

3.// effects: sets this.width and this.height to w

void setSize(int w, int h);

4.// effects: fits shape to given size

// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;

16

Square and rectangle are unrelated

• Square is not a true subtype of Rectangle

– Rectangles are expected to have a width and height that can
be changed independently

– Squares violate that expectation, could surprise client

• Rectangle is not a true subtype of Square

– Squares are expected to have equal widths and heights

– Rectangles violate that expectation, could surprise client

• Inheritance isn't always intuitive – it does encourage clear
thinking and prevents errors

– Possible solution might be to make them incomparable
(perhaps as siblings under a common parent, say Shape)

– Why isn’t the elementary school “every square is a
rectangle” true when we think about them as true subtypes?

(im)mutability!

Substitution principle Revisited

• If B is a subtype of A, a B can always be substituted for an A

• Any property guaranteed by supertype must be guaranteed by
subtype

– The subtype is permitted to strengthen & add properties

– Anything provable about an A is provable about a B

– If instance of subtype is treated purely as supertype – only
supertype methods and fields used – then result should be
consistent with an object of the supertype being manipulated

• No specification weakening

– No method removal

– An overriding method has

• a weaker precondition

• a stronger postcondition

Substitution principle: redux

Constraints on methods

• For each method in a supertype, the subtype must have a
corresponding (overriding) method

– Also may introduce new methods

• Each overriding method must

– Ask nothing extra of client (“weaker precondition”)

• requires clause is at most as strict as in the
supertype’s method

– Guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the
supertype method

• No new entries in modifies clause

19

Substitution: specification weakening

• Method inputs

– Argument types may be replaced with supertypes
(“contravariance”)

– This doesn't place any extra demand on the client.

– Java forbids any change (why?)

• Method results

– Result type may be replaced with a subtype
(“covariance”)

• This doesn't violate any expectation of the client

– No new exceptions (for values in the domain)

– Existing exceptions can be replaced with subtypes

• This doesn't violate any expectation of the client

20

Substitution exercise

• Suppose we have a method which, when given one
product, recommends another:
 Product recommend(Product ref);

• Which of these are possible forms of method in a true
subtype?
– Product recommend(SaleProduct ref);

– SaleProduct recommend(Product ref);

– Product recommend(Object ref);

– Product recommend(Product ref)

 throws NoSaleException;

• Same kind of reasoning for exception subtyping and
for modifies clause

21

 bad

 OK

 OK (overloading)

 bad

Interfaces and abstract classes

• Provide interfaces for your functionality

– Lets client write code to satisfy interfaces rather than to
satisfy concrete classes

– Allows different implementations later

– Facilitates composition, wrapper classes – design
patterns we’ll see more about later

• Consider providing helper/template abstract classes for
important interfaces – classes with partial or full
implementations, designed for extension

– Can minimize number of methods that new
implementation must provide

– Makes writing new implementations much easier

– Using them is optional, so they don't limit freedom to
create radically different implementations

 22

