
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

==, equals(), and all that

(Slides by David Notkin and Mike Ernst)

1

Programming: object equality

• The basic intuition is simple: two objects are equal if they are
indistinguishable (have the same value)

• But our intuitions are incomplete in subtle ways:

– Must the objects be the same object or “just” indistinguishable?

– What is an object’s value? How do we interpret “the bits”?

– What does it mean for two collections of objects to be equal?

• Does each need to hold the same objects? In the same
order? What if a collection contains itself?

• Who decides? The programming language designer?
You?

– If a program uses inheritance, does equality change?

– Is equality always an efficient operation? Is equality temporary
or forever?

2

Properties of equality
for any useful notion of equality

• Reflexive a.equals(a)

3 3 would be confusing

• Symmetric a.equals(b) b.equals(a)

3 = 4 4 3 would be confusing

• Transitive a.equals(b) b.equals(c)
 a.equals(c)

((1+2) = 3 3 = (5-2))
((1+2) (5-2)) would be confusing

A relation that is reflexive, transitive, and

symmetric is an equivalence relation

3

Reference equality

• The simplest and
strongest (most
restrictive)
definition is
reference equality

• a == b if and only
if a and b refer
(point) to the same
object

• Easy to show that
this definition
ensures == is an
equivalence
relation

Duration d1 = new Duration(5,3);

Duration d2 = new Duration(5,3);

Duration d3 = p2;

// T/F: d1 == d2 ?

// T/F: d1 == d3 ?

// T/F: d2 == d3 ?

// T/F: d1.equals(d2) ?

// T/F: d2.equals(d3) ?

min 5 sec 3

min 5 sec 3

d1

d2

d3 4

Object.equals method

public class Object {

 public boolean equals(Object o) {

 return this == o;

 }

}

• This implements reference equality

• What about the specification of Object.equals?

– It’s a bit more complicated…

5

Equals specification

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation:

• [munch – definition of equivalence relation]

• It is consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false, provided no information used in
equals comparisons on the object is modified.

• For any non-null reference value x, x.equals(null)
should return false.

The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that is, for
any reference values x and y, this method returns true if and only
if x and y refer to the same object (x==y has the value true). …

[munch] Parameters & Returns & See Also

6

The Object contract

• Why complicated? Because the Object class is

designed for inheritance

• Its specification will apply to all subtypes – that is, all Java

subclasses – so its specification must be flexible

– If a.equals(b) were specified to test a == b, then

no class could change this and still be a subtype of
Object

– Instead the specification gives the basic properties that
clients can rely on it to have in all subtypes of Object

• Object’s implementation of equals as a == b
satisfies these properties but the specification is more

flexible

7

Comparing objects less strictly

public class Duration {

 private final int min;

 private final int sec;

 public Duration(int min, int sec) {

 this.min = min;

 this.sec = sec;

 }

}

…

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2));

false – but

we likely

prefer it to
be true

8

An obvious improvement

public boolean equals(Duration d) {

 return d.min == min && d.sec == sec;

}

This defines an equivalence relation for Duration objects

(proof by partial example and handwaving)

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2));

Object o1 = new Duration(10,5);

Object o2 = new Duration(10,5);

System.out.println(o1.equals(o2)); // False!

But oops

9

Overloading

• We have two equals methods:

 equals(Object) in class Object

 equals(Duration) in class Duration

• The one in Duration does not override the inherited one
– it overloads it (different parameter type)

• If d has type Duration, d.equals(Duration) invokes
the method in Duration

• If o has type Object, o.equals(Duration) invokes
the equals(Object) method declared in Object

– Even if the dynamic type of o is Duration!

– Object does not have an equals(Duration)
method. Method types are resolved using static types.

– Dynamic types are used to select appropriate method
at runtime (dynamic dispatch), but selected from
possible methods with the correct static type.

10

@Override equals in Duration

@Override // compiler warning if type mismatch

public boolean equals(Object o) {

 if (! (o instanceof Duration)) // Parameter must also be

 return false; // a Duration instance

 Duration d = (Duration) o; // cast to treat o as

 // a Duration

 return d.min == min && d.sec == sec;

}

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True

 overriding re-defines an inherited method from a
superclass – same name & parameter list & return type

 Durations now have to be compared as Durations

(or as Objects, but not as a mixture)
11

Equality and inheritance

• Add a nanosecond field for fractional seconds

public class NanoDuration extends Duration {

 private final int nano;

 public NanoDuration(int min, int sec, int nano) {

 super(min, sec);

 this.nano = nano;

}

Inherited equals() from Duration ignores nano so

Duration instances with different nanos will be equal

12

equals: account for nano

public boolean equals(Object o) {

 if (! (o instanceof NanoDuration))

 return false;

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

But this is not symmetric!

Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

System.out.println(d1.equals(d2)); // false

System.out.println(d2.equals(d1)); // true

Oops!

13

Let’s get symmetry

public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 // if o is a normal Duration, compare without nano

 if (! (o instanceof NanoDuration))

 return super.equals(o);

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

But this is not transitive!
Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

Duration d3 = new NanoDuration(5,10,30);

System.out.println(d1.equals(d2)); // true

System.out.println(d2.equals(d3)); // true

System.out.println(d1.equals(d3)); // false!

Oops!

14

Replaces earlier version
if (! (o instanceof Duration))

 return false; Fix in Duration

@Overrides

public boolean equals(Object o) {

 if (o == null)

 return false;

 if (! o.getClass().equals(getClass()))

 return false;

 Duration d = (Duration) o;

 return d.min == min && d.sec == sec;

}

 Check exact class instead of instanceOf

 Equivalent change in NanoDuration

15

General issues

• Every subtype must override equals – even if it

wants the identical definition

• Take care when comparing subtypes to one another

– On your own: Consider an
ArithmeticDuration class that adds operators

but no new fields

16

Another solution: avoid inheritance

• Use composition instead
public class NanoDuration {

 private final Duration duration;

 private final int nano;

 // ...

}

• Now instances of NanoDuration and of Duration
are unrelated – there is no presumption that they can
be equal or unequal or even compared to one
another…

• Solves some problems, introduces others – for
example, can’t use NanoDurations where
Durations are expected (because one is not a
subtype of the other)

17

Efficiency of equality

Unless you define hashCode() improperly!!!

18

• Equality tests can be slow: Are two objects with millions of sub-

objects equal? Are two video files equal?

• It is often useful to quickly pre-filter – for example

if (video1.length() != video2.length())
 return false
else do full equality check

• Java requires each class to define a standard pre-filter – a
hashCode() method that produces a single hash value (a 32-bit

signed integer) from an instance of the class

• If two objects have different hash codes, they are guaranteed to

be different

• If they have the same hash code, they may be equal objects and

should be checked in full

specification for Object.hashCode

• public int hashCode()

“Returns a hash code value for the object. This method is

supported for the benefit of hashtables such as those
provided by java.util.HashMap.”

• The general contract of hashCode is

– Deterministic: o.hashCode() == o.hashCode()

• ... so long as o doesn’t change between the calls

– Consistent with equality

• a.equals(b) a.hashCode()==b.hashCode()

• Change equals()? Must you update hashCode()?

• ALMOST ALWAYS! I MEAN ALWAYS!

19

Duration hashCode implementations

Many possibilities…

public int hashCode() {

 return 1; // always safe, no pre-filtering

}

public int hashCode() {

 return min; // safe, inefficient for Durations

 // differing only in sec field

}

public int hashCode() {

 return min+sec; // safe and efficient

}

public int hashCode() {

 return new Random().newInt(50000); // danger! danger!

}

20

Equality, mutation, and time

• If two objects are equal now, will they always be equal?

– In mathematics, “yes”

– In Java, “you choose” – the Object contract doesn't
specify this

• For immutable objects, equality is inherently forever

– The object’s abstract value never changes (c.f.
“abstract value” in the ADT lectures) – be sure not to
depend on possibly changing internal values

• For mutable objects, equality can either

– Compare abstract values field-by-field or

– Be eternal (how can a class with mutable instances
have eternal equality?)

– But not both! (Since abstract value can change.)

21

