
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

Exceptions and Assertions

(Slides by Mike Ernst and David Notkin)

1

Failure causes

Partial failure is inevitable

Goal: prevent complete failure

Structure your code to be reliable and understandable

Some failure causes:

1. Misuse of your code

Precondition violation

2. Errors in your code

Bugs, representation exposure, many more

3. Unpredictable external problems

Out of memory

Missing file

Memory corruption

How would you categorize these?

Failure of a subcomponent

No return value (e.g., list element not found, division by zero)

2

Avoiding errors

A precondition prohibits misuse of your code

Adding a precondition weakens the spec

This ducks the problem

Does not address errors in your own code

Does not help others who are misusing your code

Removing the precondition requires specifying the
behavior

Strengthens the spec

Example: specify that an exception is thrown

3

Defensive programming

Check

precondition

postcondition

representation invariant

other properties that you know to be true

Check statically via reasoning (& tools)

Check dynamically at run time via assertions
assert index >= 0;

assert size % 2 == 0 : “Bad size for ” +

 toString();

Write the assertions as you write the code

4

When not to use assertions

Don’t clutter the code
x = y + 1;

assert x == y + 1; // useless, distracting

Don’t perform side effects
assert list.remove(x); // modifies behavior if disabled

// Better:
boolean found = list.remove(x);

assert found;

Turn them off in rare circumstances (e.g.,
production code(?))
“java –ea” runs Java with assertions enabled

“java” runs Java with assertions disabled (default)

Most assertions should always be enabled

5

What to do when something goes wrong

Something goes wrong: an assertion fails (or would have
failed if it were there)

Fail early, fail friendly
Goal 1: Give information about the problem

To the programmer
A good error message is key!

To the client code
Goal 2: Prevent harm from occurring

Abort: inform a human
Perform cleanup actions, log the error, etc.

Re-try
Problem might be transient

Skip a subcomputation
Permit rest of program to continue

Fix the problem (usually infeasible)
External problem: no hope; just be informative
Internal problem: if you can fix, you can prevent

6

Square root without exceptions

// requires: x  0

// returns: approximation to square root of x

public double sqrt(double x) {

 ...

}

7

Square root with assertion

// requires: x  0

// returns: approximation to square root of x

public double sqrt(double x) {

 double result;

 ... // compute result

 assert (Math.abs(result*result – x) < .0001);

 return result;

}

8

Square root, specified for all inputs;

Using try-catch

// throws: IllegalArgumentException if x < 0

// returns: approximation to square root of x

public double sqrt(double x) throws IllegalArgumentException

{

 if (x < 0)

 throw new IllegalArgumentException();

 ...

}

Client code:
try {

 y = sqrt(-1);

} catch (IllegalArgumentException e) {

 e.printStackTrace(); // or take some other action

}

Handled by catch associated with nearest dynamically enclosing try

Top-level default handler: stack trace, program terminates

9

Throwing and catching

• At any time, your program has an active
call stack of methods

– The call stack is not the same as
nesting of classes or packages or
such – it reflects which methods
called which methods during this
specific execution

• When an exception is thrown, the JVM
looks up the call stack until it finds a
method with a matching catch block for it

– If one is found, control jumps back to
that method

– If none is found, the program crashes

• Exceptions allow non-local error handling

– A method many levels up the stack
can handle a deep error

10

The finally block

try {

 code…

} catch (type name) {

 code… to handle the exception

} finally {

 code… to run after the try or catch finishes

}

finally is often used for common “clean-up” code
try {

 // ... read from out; might throw

} catch (IOException e) {

 System.out.println("Caught IOException: “

 + e.getMessage());

} finally {

 out.close();

}

11

Propagating an exception

// returns: x such that ax^2 + bx + c = 0

// throws: IllegalArgumentException if no real soln exists

double solveQuad(double a, double b, double c) throws

IllegalArgumentException

{

 // No need to catch exception thrown by sqrt

 return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

 How can clients know if a set of arguments to

solveQuad is illegal?

12

Exception translation

// returns: x such that ax^2 + bx + c = 0

// throws: NotRealException if no real solution exists

double solveQuad(double a, double b, double c) throws
NotRealException

{

 try {

 return (-b + sqrt(b*b - 4*a*c)) / (2*a);

 } catch (IllegalArgumentException e) {

 throw new NotRealException();

 }

}

class NotRealException extends Exception {

 NotRealException() { super(); }

 NotRealException(String message) { super(message); }

 NotRealException(Throwable cause) { super(cause); }

 NotRealException(String msg, Throwable c) { super(msg, c); }

}

Exception chaining:
throw new NotRealException(e);

13

Exceptions as non-local control flow

void compile() {

 try {

 parse();

 typecheck();

 optimize();

 generate():

 } catch (RuntimeException e) {

 Logger.log(“Failed: ” + e.getMessage());

 }

}

Not common – you’d better have a good reason for this

14

Informing the client of a problem

Special value

null – Map.get

-1 – indexOf

NaN – sqrt of negative number

Problems with using special value

Hard to distinguish from real results

Error-prone: what if the programmer forgets to check
result?

The value should not be legal – should cause a
failure later

Ugly

Less efficient

A better solution: exceptions

15

Two distinct uses of exceptions

Failures

Unexpected

Should be rare with well-written client and library

Can be the client’s fault or the library’s

Usually unrecoverable

Special results

Expected

Unpredictable or unpreventable by client

16

Handling exceptions

Failures

Usually can’t recover

If the condition is not checked, the exception

propagates up the stack

The top-level handler prints the stack trace

Special results

Take special action and continue computing

Should always check for this condition

Should handle locally

17

Why catch exceptions locally?

Failure to catch exceptions violates modularity

Call chain: A  IntegerSet.insert  IntegerList.insert

IntegerList.insert throws an exception

Implementer of IntegerSet.insert knows how list is being used

Implementer of A may not even know that IntegerList exists

Procedure on the stack may think that it is handling an exception
raised by a different call

Better alternative: catch it and throw it again

“chaining” or “translation”

Do this even if the exception is better handled up a level

Makes it clear to reader of code that it was not an omission

18

Java exceptions for failures and for

special cases

Checked exceptions for special cases

Library: must declare in signature

Client: must either catch or declare

Even if you can prove it will never happen at run time

There is guaranteed to be a dynamically enclosing catch

Unchecked exceptions for failures

Library: no need to declare

Client: no need to catch

RuntimeException and Error

and their subclasses

Throwable

Runtime-

Exception

Error Exception

checked

exceptions

…

19

exception hierarchy

20

Catching with inheritance

try {

 code…

} catch (FileNotFoundException fnfe) {

 code… to handle the file not found exception

} catch (IOException ioe) {

 code… to handle any other I/O exception

} catch (Exception e) {

 code to handle any other exception

}

• a SocketException would match the second block

• an ArithmeticException would match the third block

21

Avoid proliferation of checked exceptions

Unchecked exceptions are better if clients will usually write
code that ensures the exception will not happen

There is a convenient and inexpensive way to avoid it

The exception reflects unanticipatable failures

Otherwise use a checked exception

Must be caught and handled – prevents program defects

Checked exceptions should be locally caught and handled

Checked exceptions that propagate long distances
suggests bad design (failure of modularity)

Java sometimes uses null (or NaN, etc.) as a special value

Acceptable if used judiciously, carefully specified

Easy to forget to check

22

Don’t ignore exceptions

• Effective Java Tip #65: Don't ignore exceptions

• An empty catch block is (a common) poor style – often

done to get code to compile or hide an error
try {

 readFile(filename);

} catch (IOException e) {} // do nothing on error

• At a minimum, print out the exception so you know it

happened
} catch (IOException e) {

 e.printStackTrace(); // just in case

}

23

Exceptions in review

Use an exception when

Used in a broad or unpredictable context

Checking the condition is feasible

Use a precondition when

Checking would be prohibitive

E.g., requiring that a list be sorted

Used in a narrow context in which calls can be checked

Avoid preconditions because

Caller may violate precondition

Program can fail in an uninformative or dangerous way

Want program to fail as early as possible

How do preconditions and exceptions differ, for the client?

24

Exceptions in review, continued

Use checked exceptions most of the time

Handle exceptions sooner rather than later

Not all exceptions are errors

A program structuring mechanism with non-local

jumps (expensive, should be rare)

Used for exceptional (unpredictable) circumstances

Also see Bloch’s Effective Java, ch. 9

25

