
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

Module Design and General Style Guidelines

(Based on slides by David Notkin and Mike Ernst)

1

Style: It isn’t just about fashion…

“Use the active voice.”

“Omit needless words.”
“Don't patch bad code - rewrite it.”

“Make sure your code 'does nothing'

gracefully.”

2

Modules

• A module is a relatively general term for a class or a

type or any kind of design unit in software

• A modular design focuses on what modules are

defined, what their specifications are, how they relate

to each other, but not usually on the implementation

of the modules themselves

3

Ideals of modular software

• Decomposable – can be broken down into
modules to reduce complexity and allow
teamwork

• Composable – “Having divided to conquer,
we must reunite to rule [M. Jackson].”

• Understandable – one module can be
examined, reasoned about, developed, etc.
in isolation

• Continuity – a small change in the
requirements should affect a small number
of modules

• Isolation – an error in one module should be
as contained as possible

4

Two general design issues

• Cohesion – how well components fit together to form

something that is self-contained, independent, and

with a single, well-defined purpose

• Coupling – how much dependency there is between

components

• Guideline: reduce coupling, increase cohesion

• Applies to modules and to individual routines

5

Cohesion

• The most common reason to put elements – data and

behavior – together is to form an ADT

– There are, at least historically, other reasons to place

elements together – for example, for performance reasons it

was sometimes good to place together all code to be run

upon initialization of a program

• The common design objective of separation of

concerns suggests a module should address a single

set of concerns

6

Coupling

• How are modules dependent on one another?

– Statically (in the code)? Dynamically (at run-time)? More?

– Ideally, split design into parts that don't interact much

• Roughly, the more coupled modules are, the more they need to

be thought of as a single, larger module

An application
A poor decomposition

(parts strongly coupled)
A better decomposition
(parts weakly coupled)

MY
FINAL

PROJECT

MY

FINAL PROJECT

MY

FINECT PROJAL

7

Coupling is the path to the dark side

• Coupling leads to complexity

• Complexity leads to confusion

• Confusion leads to suffering

• Once you start down the dark

path, forever will it dominate

your destiny, consume you it will

8

Law of Demeter
Karl Lieberherr and colleagues

• Law of Demeter: An object should know as little as

possible about the internal structure of other objects with

which it interacts – a question of coupling

• Or… “only talk to your immediate friends”

• Closely related to representation exposure and

(im)mutability

• Bad example – too-tight chain of coupling between

classes
general.getColonel().getMajor(m).getCaptain(cap)

 .getSergeant(ser).getPrivate(name).digFoxHole();

• Better example
general.superviseFoxHole(m, cap, ser, name);

9

An object should only send

messages to … (More Demeter)

• itself (this)

• its instance variables

• its methods’ parameters

• any object it creates

• any object returned by a call to one of this's

methods

• any objects in a collection of the above

• notably absent: objects returned by messages sent to

other objects

Guidelines: not strict rules!

But thinking about them will

generally help you produce

better designs

10

God classes

• god class: a class that hoards too much of the data or

functionality of a system

– Poor cohesion – little thought about why all of the

elements are placed together

– Only reduces coupling by collapsing multiple

modules into one (and thus reducing the

dependences between the modules to

dependences within a module)

• A god class is an example of an anti-pattern – it is a

known bad way of doing things

11

Method design

• A method should do only one thing, and do it well – for example,
observe but not mutate, …

• Effective Java (EJ) Tip #40: Design method signatures carefully

– Avoid long parameter lists

– Perlis: “If you have a procedure with ten parameters, you
probably missed some.”

– Especially error-prone if the parameters are all the same
type

– Avoid methods that take lots of boolean "flag" parameters

• EJ Tip #41: Use overloading judiciously

– Can be useful, but don't overload with the same number of
parameters and think about whether the methods really are
related.

12

Cohesion again…

• Methods should do one thing well:

– Compute a value but let client decide what to do with it

– Observe or mutate, don’t do both

– Don’t print something as a side effect of some other

operation

• Don’t limit future possible uses of the method by having it

do multiple, not-necessarily related things

• If you’ve got a method that is doing too much, split it up

– Maybe separate, unrelated methods; maybe one

method that does a task and another that calls it

13

Field design

• A variable should be made into a field if and only if

– It is part of the inherent internal state of the object

– It has a value that retains meaning throughout the
object's life

– Its state must persist past the end of any one
public method

• All other variables can and should be local to the
methods in which they are used

– Fields should not be used to avoid parameter
passing

– Not every constructor parameter needs to be a
field

14

Constructor design

• Constructors should take all arguments necessary to
initialize the object's state – no more, no less

– Don't make the client pass in things they shouldn't
have to

• Object should be completely initialized after constructor is
done

– Shouldn't need to call other methods to “finish”
initialization

• Minimize the work done in a constructor

– A constructor should not do any heavy work, such as
calling println to print state, or performing expensive
computations

– If an object's creation is heavyweight, use a static
method instead

15

Naming

• Choose good names for classes and interfaces

– Class names should be nouns
• Watch out for "verb + er" names, e.g. Manager, Scheduler,
ShapeDisplayer

• Interface names often end in -able or -ible, e.g. Iterable,
Comparable

– Method names should be verb phrases
• Observer methods can be nouns such as size or totalQuantity

• Many observers should be named with "get" or "is" or "has"

• Most mutators should be named with "set" or similar

• Choose affirmative, positive names over negative ones

– isSafe not isUnsafe

– isEmpty not hasNoElements

• EJ Tip #56: Adhere to generally accepted naming conventions

16

Terrible names…

• count, flag, status, compute, check, value,
pointer, any name starting with my…

– These convey no useful information

– myWidget is a cliché – sounds like picked by a 3-year-old

– What others can you think of?

• Describe what is being counted, what the “flag” indicates, etc.

– numberOfStudents, courseFull, flightStatus (still not great),
calculatePayroll, validateWebForm, …

• But short names in local contexts are good:

– Good: for (i = 0; i < size; i++) items[i]=0;

– Bad: for (theLoopCounter = 0;
 theLoopCounter < theCollectionSize;
 theLoopCounter++) theItems[theLoopCounter]=0;

17

Class design ideals

• Cohesion and coupling, already discussed

• Completeness: Every class should present a

complete interface

• Clarity: Interface should make sense without

confusion

• Convenience: Provide simple ways for clients to do

common tasks

• Consistency: In names, param/returns, ordering, and

behavior

18

Completeness

• Leaving out important methods makes a class
cumbersome to use

– counterexample: A collection with add but no remove

– counterexample: A tool object with a
setHighlighted method to select it, but no
setUnhighlighted method to deselect it

– counterexample: Date class has no date-arithmetic
features

• Related

– Objects that have a natural ordering should implement
Comparable

– Objects that might have duplicates should implement
equals

– Almost all objects should implement toString

19

Consistency

• A class or interface should be consistent with respect to

names, parameters/returns, ordering, and behavior

• Use a similar naming scheme; accept parameters in the

same order – not like

– setFirst(int index, String value)

setLast(String value, int index)

• Some counterexamples

– Date/GregorianCalendar use 0-based months

– String equalsIgnoreCase, compareToIgnoreCase;

but regionMatches(boolean ignoreCase)

– String.length(), array.length, collection.size()

20

Clarity and Convenience

• Clarity: An interface should make sense without creating
confusion

– Even without fully reading the spec/docs, a client
should largely be able to follow his/her natural
intuitions about how to use your class – although
reading and precision are crucial

– Counterexample: Iterator's remove method

• Convenience: Provide simple ways for clients to do
common tasks

– If you have a size / indexOf, include isEmpty /
contains, too

– Counterexample: System.in sucks; finally fixed with
Scanner

21

Open-Closed Principle

• Software entities should be open for extension, but
closed for modification

– When features are added to your system, do so by
adding new classes or reusing existing ones in
new ways

– If possible, don't make change by modifying
existing ones – existing code works and changing
it can introduce bugs and errors.

• Related: Code to interfaces, not to classes

– Ex: accept a List parameter, not ArrayList or
LinkedList

– EJ Tip #52: Refer to objects by their interfaces

22

Cohesion again (“expert pattern”)

• The class that contains most of the data needed to

perform a task should perform the task

– counterexample: A class with lots of getters but

not a lot of methods that actually do work – this

relies on other classes to “get” the data and

process it externally

• Reduce duplication

– Only one class should be responsible for

maintaining a set of data, even (especially) if it is

used by many other classes

23

Invariants

• Class invariant: An assertion that is true about every

object of a class throughout each object’s lifetime

– Ex: A BankAccount's balance will never be

negative

• State them in your documentation, and enforce them

in your code

24

Documenting a class

• Keep internal and external documentation separate

• external: /** ... */ Javadoc for classes, interfaces,
and methods

– Describes things that clients need to know about the
class

– Should be specific enough to exclude unacceptable
implementations, but general enough to allow for all
correct implementations

– Includes all pre/postconditons and class invariants

• internal: // comments inside method bodies

– Describes details of how the code is implemented

– Information that clients wouldn't and shouldn't need,
but a fellow developer working on this class would
want – invariants and internal pre/post conditions
especially

25

The role of documentation

From Kernighan and Plauger

• If a program is incorrect, it matters little what the docs say

• If documentation does not agree with code, it is not worth

much

• Consequently, code must largely document itself. If not,

rewrite the code rather than increasing the documentation

of the existing complex code. Good code needs fewer

comments than bad code.

• Comments should provide additional information from the

code itself. They should not echo the code.

• Mnemonic variable names and labels, and a layout that

emphasizes logical structure, help make a program self-

documenting

26

Static vs. non-static design

• What members should be static?

– members that are related to an entire class

– not related to the data inside a particular object of that
class’s type

– Should I have to construct an object just to call this
method?

• Examples
– Time.fromString

– Math.pow

– Calendar.getInstance

– NumberFormatter.getCurrencyInstance

– Arrays.toString? Collections.sort?

27

Public vs. private design

• Strive to minimize the public interface of the classes you
write

– Clients like classes that are simple to use and
understand

– Reasoning is easier with narrower interfaces and
specifications

• Achieve a minimal public interface by

– Removing unnecessary methods – consider each one

– Making everything private unless absolutely necessary

– Pulling out unrelated behavior into a separate class

• public static constants are okay if declared final

– But still better to have a public static method to get
the value; why?

– Or use enums if that’s what you’re trying to do

28

Choosing types

• Numbers: Favor int and long for most numeric computations

– EJ Tip #48: Avoid float and double if exact answers
are required

– Classic example: Representing money (round-off is bad
here)

• Favor the use of collections (e.g. lists) over arrays

• Strings are often overused since much data comes in as text

• Consider use of enums, even with only two values – which of
the following is better?

– oven.setTemp(97, true);
oven.setTemp(97, Temperature.CELSIUS);

• Wrapper types should be used minimally (usually with
collections)

– EJ Tip #49: Prefer primitive types to boxed primitives (that is,
Integer, Float, etc.)

• Bad: public Counter(Character ch)

29

Independence of views

• Confine user interaction to a core set of “view” classes
and isolate these from the classes that maintain the key
system data

• Do not put println statements in your core classes

– This locks your code into a text representation

– Makes it less useful if the client wants a GUI, a web
app, etc.

• Instead, have your core classes return data that can be
displayed by the view classes

– Which of the following is better?

 public void printMyself()

 public String toString()

30

