
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

Abstract Data Types – Examples and Recap
(Based on slides by Mike Ernst and David Notkin)

1

ADT operations and mutation

• Creators/Producers

– Creators: return new ADT values (e.g., Java

constructors). Effects, not modifies

– Producers: ADT operations that return new values

• Mutators: Modify a value of an ADT

• Observers: Return information about an ADT

• Mutable ADTs: creators, observers, and mutators

• Immutable ADTs: creators, observers, and producers

2

Three examples

• A primitive type as an (immutable) ADT

• An immutable type as an ADT

• A mutable type as an ADT

3

Primitive data types are ADTs

• int is an immutable ADT:

– creators: 0, 1, 2, ...

– producers: + - * / ...

– observer: Integer.toString(int)

• Peano showed we only need one creator for basic

arithmetic

– Why might that not be the best programming

language design choice?

4

Poly, an immutable datatype: overview

/**

 * A Poly is an immutable polynomial with

 * integer coefficients. A typical Poly is

 * c0 + c1x + c2x
2 + ...

 **/

class Poly {

• Overview:

– Always state whether mutable or immutable

– Define an abstract model for use in operation specifications

• Often difficult and always vital!

• Appeal to math if appropriate

• Give an example (reuse it in operation definitions)

• In all ADTs, the state in specifications is abstract, not concrete

– (coefficients are the abstract state in the above Poly spec.)

5

Poly: creators

 // effects: makes a new Poly = 0

 public Poly()

 // effects: makes a new Poly = cxn

 // throws: NegExponent if n < 0

 public Poly(int c, int n)

• Creators

– New object, not part of pre-state: effects, not
modifies

– Overloading: distinguish procedures of same name by
parameters (Example: two Poly constructors)

Footnote: slides omit full JavaDoc comments to save space

6

Poly: observers

// returns: the degree of this,

// i.e., the largest exponent with a

// non-zero coefficient; if no such

// exponent exists, return 0

public int degree()

// returns: the coefficient of the term

// of this whose exponent is d

public int coeff(int d)

7

Notes on observers

• Observers

– Used to obtain information about objects of the type

– Return values of other types

– Never modify the abstract value

– Specification uses the abstraction from the overview

• this

– The particular Poly object being accessed

– The target of the invocation

– Also known as the receiver

Poly x = new Poly(4, 3);

int c = x.coeff(3);

System.out.println(c); // prints 4

8

Poly: producers

// returns: this + q (as a Poly)

public Poly add(Poly q)

// returns: the Poly = this * q

public Poly mul(Poly q)

// returns: -this

public Poly negate()

9

Notes on producers

• Operations on a type that create other objects of the

type

• Common in immutable types like java.lang.String

– String substring(int offset, int len)

• No side effects

– That is, they can affect the program state but

cannot have a side effect on the existing values of

the ADT

10

IntSet, a mutable datatype:

overview and creator

// Overview: An IntSet is a mutable,

// unbounded set of integers. A typical

// IntSet is { x1, ..., xn }.

class IntSet {

 // effects: makes a new IntSet = {}

 public IntSet()

11

IntSet: observers

// returns: true if x this

// else returns false

public boolean contains(int x)

// returns: the cardinality of this

public int size()

// returns: some element of this

// throws: EmptyException when size()==0

public int choose()

12

IntSet: mutators

// modifies: this

// effects: thispost = thispre {x}

public void add(int x) // insert

an element

// modifies: this

// effects: thispost = thispre - {x}

public void remove(int x)

13

Notes on mutators

• Operations that modify an element of the type

• Rarely modify anything other than this

– Must list this in modifies clause (as appropriate)

• Typically have no return value

• Mutable ADTs may have producers too, but that is

less common

14

Quick recap

• The examples focused on the abstract specification –

with no connection at all to a concrete

implementation

• To connect them we need the abstraction function

(AF), which maps values of the concrete

implementation of the ADT into abstract values in the

specification

• The representation invariant (RI) ensures that values

in the concrete implementation are well-defined – that

is, the RI must hold for every element in the domain

of the AF

15

The abstraction function is a function

• Why do we map concrete to abstract rather than vice

versa?

• It’s not a function in the other direction.

– E.g., lists [a,b] and [b,a] each represent the

set {a, b}

• It’s not as useful in the other direction.

– We can manipulate abstract value through

abstract operations

16

Brief example
Abstract stack with array and

“top” index implementation

new() 0 0 0

push(17) 17 0 0

T
o
p
=
1

push(-9) 17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <>

stack = <17>

stack = <17,-9>

pop() 17 -9 0

stack = <17>
T
o
p
=
1

Abstract states are the same
stack = <17> = <17>

Concrete states are different
<[17,0,0], top=1>

≠

<[17,-9,0], top=1>

AF is a function
AF-1 is not a function

CSE 331 Autumn 2011

Writing an abstraction function

• The domain: all representations that satisfy the rep
invariant

• The range: can be tricky to denote

– For mathematical entities like sets: easy

– For more complex abstractions: give names to
fields or derived values

• AF defines the value of each “specification
field”

• “derived specification fields” more complex

• The overview section of the specification should
provide a way of writing abstract values

– A printed representation is valuable for debugging

18

 Creating the concrete object must establish the representation invariant

 Every concrete operation must maintain the rep invariant

 Creating the abstraction object must establish the abstraction function

 Every abstract operation must maintain the AF to provide consistent

semantic meaning to the client

 If things are right, either red arrow above will give the same result

ADTs and Java language features

• Java classes

– Make operations in the ADT public

– Make other ops and fields of the class private

– Clients can only access ADT operations

• Java interfaces

– Clients only see the ADT, not the implementation

– Multiple implementations have no code in common

– Cannot include creators (constructors) or fields

• Both classes and interfaces are sometimes appropriate

– Write and rely upon careful specifications

– Prefer interface types instead of specific classes in
declarations (e.g., List instead of ArrayList for
variables and parameters)

20

Representation exposure redux

• Hiding the representation of data in the concrete

implementation increases the strength of the

specification contract, making the rights and

responsibilities of both the client and the implementer

clearer

• Defining the fields as private in a class is not

sufficient to ensure that the representation is hidden

• Representation exposure arises when information

about the representation can be determined by the

client

21

Representation exposure

Is Line mutable or immutable?

It depends on the implementation!

If Line creates an internal copy: immutable

If Line stores a reference to p1, p2: mutable

Lesson: storing a mutable object in an immutable
collection can expose the representation

22

Point p1 = new Point();

Point p2 = new Point();

Line line = new Line(p1,p2);

p1.translate(5, 10); // move point p1

A half-step backwards

• Why focus so much on invariants (properties of code that

do not – or are not supposed to – change)?

• Why focus so much on immutability (a specific kind of

invariant)?

• Software is complex – invariants/immutability etc. allow us

to reduce the intellectual complexity to some degree

• That is, if we can assume some property remains

unchanged, we can consider other properties instead

• Simplistic to some degree, but reducing what we need to

think about in a program can be a huge benefit

23

