
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

Lecture 0 – Course Introduction

1

Welcome!

• We have 10 weeks to move to a level well above

novice programmer:

– Larger programs

– Principled, systematic programming: What does it

mean to get it right? How do we know when we

get there? What are best practices for doing this?

– Effective use of languages and tools: Java, IDEs,

debuggers, JUnit, JavaDoc, svn

• The principles are ultimately more important

than the details

 (Yeah, right…)

2

Course staff

• Lecturer:

– Hal Perkins

• TAs:

– Krysta Yousoufian

– Jackson Roberts

– Zachary Stein

– Laure Thompson

Ask us for help!

3

Main topic: Managing complexity

• Abstraction and specification

– Procedural, data, control flow

– Why they are useful and how to use them

• Writing, understanding, and reasoning about code

– The examples are in Java, but the issues are more general

– Object-oriented programming

• Program design and documentation

– What makes a design good or bad (example: modularity)

– The process of design and design tools

• Pragmatic considerations

– Testing

– Debugging and defensive programming

– Managing software projects

4

The goal of system building

• To create a correctly functioning artifact!

• All other matters are secondary

– Many of them are essential to producing a correct

system

• We insist that you learn to create correct systems

– This is hard (but fun and rewarding!)

5

Why is building good software hard?

• Large software systems are enormously complex

– Millions of “moving parts”

• People expect software to be malleable

– After all, it’s “only software”

– Software mitigates the deficiencies of other components

• We are always trying to do new things with software

– Relevant experience often missing

• Software engineering is about:

– Managing complexity

– Managing change

– Coping with potential defects

• Customers, developers, environment, software

6

Programming is hard

• It is surprisingly difficult to specify, design, implement,
test, debug, and maintain even a simple program

• CSE 331 will challenge you

• If you are having trouble, think before you act

– Then, look for help

• We strive to create assignments that are reasonable
if you apply the techniques taught in class…

… but likely hard to do in a brute-force manner

7

Prerequisites

• Knowing Java is a prerequisite

– We assume you have mastered 142 and 143

Examples:

• Sharing:

– Distinction between == and equals()

– Aliasing (multiple references to the same object)

• Subtyping

– Varieties: classes, interfaces

– Inheritance and overriding

• Object-oriented dispatch:

– Expressions have a compile-time type

– Objects/values have a run-time type

8

Logistics

• 3 lectures/week + 1 section

– You are responsible for what happens, even if you

skip a day (but contact us if it is an emergency)

• All course materials are on the web (often after

class): but TAKE NOTES!

• Communications:

– Discussion board (not Delphic oracle)

– Mailing list for messages from course staff to

everyone (you are subscribed if you are enrolled,

and you are responsible for messages sent to the

list)

9

Requirements

• Primarily programming assignments but some written
problem sets, approximately weekly (55%)

• 1 midterm (15%), 1 final (25%)

• 5% online quizzes, citizenship, etc.

• Collaboration: individual work unless announced
otherwise; never look at or show your code to others

• Extra credit: when available, small effect on your
grade if you do it – no effect if you don’t

• We reserve the right to adjust percentages as the
quarter evolves to reflect the workload

10

Academic Integrity

• Policy on the course web. Read it!

• Do your own work – always explain any

unconventional action on your part

• I trust you completely

• I have no sympathy for trust violations – nor should

you

• Honest work is the most important feature of a

university. It shows respect for your colleagues and

yourself.

11

Deadlines

• Turn things in on time!

• But things happen, so …

– You have 4 late days to use this quarter

– No more than 2 late days per assignment

– Counted in 24 hour chunks (5 min = 24 hours late)

– On group projects, can only use if both partners

have late days and both partners are charged

• That’s it. No other extensions (but contact instructor if you are hospitalized)

• Advice: Save late days for the end of quarter when

you (might) really need them

12

Resources – Books

Required (assigned readings, some online quizzes) –

every serious programmer should read these

• Pragmatic Programmer, Hunt & Thomas

• Effective Java 2nd ed, Bloch

Optional

• Object-Oriented Design & Patterns, Horstmann

– Background reading on design patterns, GUIs,

etc. if you want more

• Core Java Vol I, Horstmann

– Decent “Java book” if you want one

13

Work to do!

• If you’re still trying to add the course, please sign the info

sheet before leaving today

• Fill in the Office Hours Doodle on the web site

– We’re trying to get an idea what would be most useful

• Sections tomorrow – more about programming logics,

continuing from today

– First assignment posted shortly

• So let’s get going…

14

