
Krysta Yousoufian

CSE 331, Spring 2012

With material from Marty Stepp, Mike Ernst, and others

Card class
public class Card {

 private ___ suit;

 private int rank;

 …

}

 suit should be CLUBS, DIAMONDS, HEARTS, or
SPADES

 How do we represent this?

int constants
public class Card {

 public static final int CLUBS = 0;

 public static final int DIAMONDS = 1;

 public static final int HEARTS = 2;

 public static final int SPADES = 3;

 private int suit;

 private int rank;

 …

}

 What’s wrong with this approach?

String constants
public class Card {

 public static final String CLUBS = “CLUBS”;

 public static final String DIAMONDS =
 “DIAMONDS”;

 public static final String HEARTS = “HEARTS”;

 public static final String SPADES = “SPADES”;

 private String suit;

 …

}

 Is this better?

How about a class?
public final class Suit {

 public static final Suit CLUBS = new Suit();

 public static final Suit DIAMONDS =

 new Suit();

 public static final Suit HEARTS = new Suit();

 public static final Suit SPADES = new Suit();

 private Suit() {} // no more can be made

}

 Is this better?

How about a class?
public final class Suit {

 public static final Suit CLUBS = new Suit();

 public static final Suit DIAMONDS =

 new Suit();

 public static final Suit HEARTS = new Suit();

 public static final Suit SPADES = new Suit();

 private Suit() {} // no more can be made

}

 Is this better?
 Want to list the abstract values without
 worrying about the representation

The solution: enums
public enum Suit {

 CLUBS,

 DIAMONDS,

 HEARTS,

 SPADES

}

 Effective Java Tip #30: “Use enums instead of int
constants”

What can you do with an enum?
 Use it as the type of a variable, field, parameter, or return

public class Card {

 private Suit suit;

 ...

}

 Compare with == (why don’t we need equals?)

if (suit == Suit.CLUBS) { ...

What else can you do?
 Get the value’s name (equivalent to toString)

// Gets “CLUBS”, “SPADES”, etc.

suitName = card.getSuit().getName();

 Compare with switch statement

 Lots more, in Java!

 Enums are actually objects in Java (ints in C)

 Can have fields, methods, and constructors

 See Oracle’s enum tutorial

http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

The switch statement
switch (boolean test) {

case value:

 code;

 break;

case value:

 code;

 break;

...

default: // if not one of the above values

 code;

 break;

}

The switch statement
 Alternative to if/else

 Only works for integral types
(e.g. int, char, enum)

 Case can also end with
return

 If no break or return,
“falls through” into the next
case

switch (boolean test) {

case value:

 code;

 break;

case value:

 code;

 break;

...

default:

 code;

 break;

}

Code example
 See package enum_switch_demo

Example: Book printer
 Hierarchical book class:

 Book

 Chapter

 Paragraph

 Want an operation to print out the book’s text (title,
chapter headings, paragraphs)

 Where should the print operation go?

Where should the print operation go?
 Option 1: In a DocumentPrinter class

 Pros/cons?

 Option 2: In Book directly

 Pros/cons?

Where should the print operation go?
 Option 1: In a DocumentPrinter class

 Requires DocumentPrinter to define the traversal

 Traversal could be complicated, could change

 Might need to traverse many types of documents of
different structure

 Duplicates traversal code among printers

Where should the print operation go?
 Option 2: In Book directly

 Limits ability to add new printers (or other operations)

 Is there a third option?

Option #3: Visitor Pattern
 Want to perform some operation on a hierarchical data

structure

 Needs to “visit” every object

 Operation defined externally

 But traversal defined internally, not in the operation

How it works
 Visitor’s visit method implements the operation

 Data structure’s accept method:

 tells Visitor to visit this object

 calls accept on all children

BookPrinter example
 See package visitor_demo

Discussion of book visitor
 Pros?

 Cons?

Discussion of book visitor
 Pros?

 Cons?

 Book pretty simple – is it worth isolating the traversal?

 For this simple example, perhaps not – complicates code

 But, might use printer with many different types of
documents: Textbook, Novel, Magazine, Newspaper, …

 Each document would manage its own structure

Discussion of book visitor
 Pros?

 Cons?

 Book pretty simple – is it worth isolating the traversal?

 For this simple example, maybe not

 But, could use printer with many different types of
documents: Textbook, Novel, Magazine, Newspaper, …

 Each document would manage its own structure

 Other visitors besides printers?

 Word frequency counter

News Feed
 Real-time news aggregator

 Displays headlines as they arrive

 What classes should we write?

 How should they communicate?

Push vs. Pull Communication
 M stores and receives information that V needs

 How does V get this data?

 Pull approach:

 Push approach:

Review: Push vs. Pull
 M stores and receives information that V needs

 How does V get this data?

 Pull approach: V asks M if it has new data

 Push approach: M notifies V when it has new data

 How do we choose which to use?

 Which do we want for our news feed?

Observer/Observable
 Design pattern implementing push functionality

 Observable pushes data to Observers

 Observers register with Observable to get
notifications

In Java
 Observable is a class

 Observer is an interface

 Observable pushes out data by calling:

 setChanged (marks that its state has changed)

 notifyObservers

 Observer handles new data in update method

Back to News Feed
 See package observer_demo

Discussion of Observer/Observable
 What is the module dependency diagram (MDD)?

 What is the MDD if we use a pull system?

Discussion of Observer/Observable
 What if Observer needs to post different kinds of

events?

 Often used with MVC – use with CampusPaths?

 GUI: ActionListeners

