
Krysta Yousoufian

CSE 331, Spring 2012

With material from Marty Stepp, Mike Ernst, and others

Card class
public class Card {

 private ___ suit;

 private int rank;

 …

}

 suit should be CLUBS, DIAMONDS, HEARTS, or
SPADES

 How do we represent this?

int constants
public class Card {

 public static final int CLUBS = 0;

 public static final int DIAMONDS = 1;

 public static final int HEARTS = 2;

 public static final int SPADES = 3;

 private int suit;

 private int rank;

 …

}

 What’s wrong with this approach?

String constants
public class Card {

 public static final String CLUBS = “CLUBS”;

 public static final String DIAMONDS =
 “DIAMONDS”;

 public static final String HEARTS = “HEARTS”;

 public static final String SPADES = “SPADES”;

 private String suit;

 …

}

 Is this better?

How about a class?
public final class Suit {

 public static final Suit CLUBS = new Suit();

 public static final Suit DIAMONDS =

 new Suit();

 public static final Suit HEARTS = new Suit();

 public static final Suit SPADES = new Suit();

 private Suit() {} // no more can be made

}

 Is this better?

How about a class?
public final class Suit {

 public static final Suit CLUBS = new Suit();

 public static final Suit DIAMONDS =

 new Suit();

 public static final Suit HEARTS = new Suit();

 public static final Suit SPADES = new Suit();

 private Suit() {} // no more can be made

}

 Is this better?
 Want to list the abstract values without
 worrying about the representation

The solution: enums
public enum Suit {

 CLUBS,

 DIAMONDS,

 HEARTS,

 SPADES

}

 Effective Java Tip #30: “Use enums instead of int
constants”

What can you do with an enum?
 Use it as the type of a variable, field, parameter, or return

public class Card {

 private Suit suit;

 ...

}

 Compare with == (why don’t we need equals?)

if (suit == Suit.CLUBS) { ...

What else can you do?
 Get the value’s name (equivalent to toString)

// Gets “CLUBS”, “SPADES”, etc.

suitName = card.getSuit().getName();

 Compare with switch statement

 Lots more, in Java!

 Enums are actually objects in Java (ints in C)

 Can have fields, methods, and constructors

 See Oracle’s enum tutorial

http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

The switch statement
switch (boolean test) {

case value:

 code;

 break;

case value:

 code;

 break;

...

default: // if not one of the above values

 code;

 break;

}

The switch statement
 Alternative to if/else

 Only works for integral types
(e.g. int, char, enum)

 Case can also end with
return

 If no break or return,
“falls through” into the next
case

switch (boolean test) {

case value:

 code;

 break;

case value:

 code;

 break;

...

default:

 code;

 break;

}

Code example
 See package enum_switch_demo

Example: Book printer
 Hierarchical book class:

 Book

 Chapter

 Paragraph

 Want an operation to print out the book’s text (title,
chapter headings, paragraphs)

 Where should the print operation go?

Where should the print operation go?
 Option 1: In a DocumentPrinter class

 Pros/cons?

 Option 2: In Book directly

 Pros/cons?

Where should the print operation go?
 Option 1: In a DocumentPrinter class

 Requires DocumentPrinter to define the traversal

 Traversal could be complicated, could change

 Might need to traverse many types of documents of
different structure

 Duplicates traversal code among printers

Where should the print operation go?
 Option 2: In Book directly

 Limits ability to add new printers (or other operations)

 Is there a third option?

Option #3: Visitor Pattern
 Want to perform some operation on a hierarchical data

structure

 Needs to “visit” every object

 Operation defined externally

 But traversal defined internally, not in the operation

How it works
 Visitor’s visit method implements the operation

 Data structure’s accept method:

 tells Visitor to visit this object

 calls accept on all children

BookPrinter example
 See package visitor_demo

Discussion of book visitor
 Pros?

 Cons?

Discussion of book visitor
 Pros?

 Cons?

 Book pretty simple – is it worth isolating the traversal?

 For this simple example, perhaps not – complicates code

 But, might use printer with many different types of
documents: Textbook, Novel, Magazine, Newspaper, …

 Each document would manage its own structure

Discussion of book visitor
 Pros?

 Cons?

 Book pretty simple – is it worth isolating the traversal?

 For this simple example, maybe not

 But, could use printer with many different types of
documents: Textbook, Novel, Magazine, Newspaper, …

 Each document would manage its own structure

 Other visitors besides printers?

 Word frequency counter

News Feed
 Real-time news aggregator

 Displays headlines as they arrive

 What classes should we write?

 How should they communicate?

Push vs. Pull Communication
 M stores and receives information that V needs

 How does V get this data?

 Pull approach:

 Push approach:

Review: Push vs. Pull
 M stores and receives information that V needs

 How does V get this data?

 Pull approach: V asks M if it has new data

 Push approach: M notifies V when it has new data

 How do we choose which to use?

 Which do we want for our news feed?

Observer/Observable
 Design pattern implementing push functionality

 Observable pushes data to Observers

 Observers register with Observable to get
notifications

In Java
 Observable is a class

 Observer is an interface

 Observable pushes out data by calling:

 setChanged (marks that its state has changed)

 notifyObservers

 Observer handles new data in update method

Back to News Feed
 See package observer_demo

Discussion of Observer/Observable
 What is the module dependency diagram (MDD)?

 What is the MDD if we use a pull system?

Discussion of Observer/Observable
 What if Observer needs to post different kinds of

events?

 Often used with MVC – use with CampusPaths?

 GUI: ActionListeners

