
Model-View-Controller

(or Model-View-Presenter)

MVC
• THE classic design pattern

• Used for data-driven user applications

• Such apps juggle several tasks:
o Loading and storing the data – getting it in/out of storage on

request

o Constructing the user interface – what the user sees

o Interpreting user actions – deciding whether to modify the UI or

data

• These tasks are largely independent of each other

• Model, View, and Controller each get one task

Model
talks to data

source to retrieve

and store data

Which database

tables is the requested

data stored in?

What SQL query will

get me the data

I need?

View
asks model for

data and presents

it in a user-friendly

format

Would this text look

better blue or red? In

the bottom corner

or front and center?

Should these items go in

a dropdown list or radio

buttons?

Controller
listens for the user

to change data or

state in the UI,

notifying the

model or view

accordingly

The user just clicked the

“hide details” button. I

better tell the view.

The user just changed the

event details. I better let

the model know to

update the data.

MVC: Summary
Model

talks to data source to

retrieve and store data

View

asks model for data and presents it

in a user-friendly format

Controller

listens for the user to change data

or state in the UI, notifying the

model or view accordingly

Communication Flow
Taken from http://msdn.microsoft.com/en-us/library/ff649643.aspx

What do you think are the benefits of MVC?

Model View

Controller

http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx

Benefits of MVC
• Organization of code

o Maintainable, easy to find what you need

• Ease of development
o Build and test components independently

• Flexibility
o Swap out views for different presentations of the same data (ex:

calendar daily, weekly, or monthly view)

o Swap out models to change data storage without affecting user

