
Common Issues: 
AF, RI, Rep 
Exposure 

CSE 331Section 

Krysta Yousoufian 

May 3, 2012 



Representation Invariant 
Common Misconceptions 



Misconception #1 
• RI for IntQueue1: 

 

 

• What’s wrong with this? 

o Describes how to derive abstract value  

o Belongs in AF 

o If violated, object still maps to an abstract value 

• RI defines a broken object: if violated…. 

o …object is outside domain of AF 

o …object can’t be mapped to any abstract value 

 



Rules of Thumb 
1. RI should be verifiable in checkRep() 

o If you can’t write code to verify it, maybe it belongs in AF 

2. RI is w.r.t a snapshot of the object 

o Corollary of #1 

o Only considers state of the object at that moment 

o Description of changes over time more likely belong in the 

AF 

• Only rules of thumb – there are exceptions 



Misconception #2 
• You have an instance field like: 

 Map<String, String> stuff; 

• Rep invariant: 

 stuff != null 

 no entry in stuff maps to a null value 

• My class makes sure nulls are never added, so I 

don’t need to put that in the RI, right? 



RI should always be true 
• You’re sure your class won’t add nulls? Great! 

• But bugs are good at hiding! 

o Sure you haven’t missed anything? 

• And code changes 

o Sure someone won’t introduce a bug later? 

• Everything in your RI, you expect to be true 

o So what’s the point? 

o Safeguard against bugs via checkRep() 

o Provide documentation for future developers 



Abstraction Function 



Concrete to abstract 
• AF describes how to derive abstract value from 

instance fields 

• To write the AF, ask yourself: 

1. What does the client see? 

o What abstract fields, structure, or properties need to be 

defined? 

2. For each item in #1: how is it stored in the concrete 

object? 

o If the client asked for it, what would you return? 

• AF documents each item identified in #2 



Representation Exposure 



Representation Exposure 
• Some object x, client that uses x 

• Client gets a pointer to an object in 
x’s implementation 

• Client can modify x’s representation 

directly – bypass public interface 

It’s like a broken 
window! 



Point 

x 

y 

r 

theta 

translate 

scale_rot 

rest of 

program 

abstraction 

barrier 

A correctly implemented class 

The implementation is hidden 

The only operations on objects of the type are those 

provided by the abstraction 

clients implementation 



Point 

x 

y 

r 

theta 

translate 

scale_rot 

rest of 

program 

abstraction 

barrier 

With representation exposure 

Client can bypass the abstraction barrier and modify 

the implementation directly 

clients implementation 



Representation Exposure 
• Rep exposure happens… 

o When x returns an internal field 

o When x stores an object passed in 

by a client 

• Rep exposure doesn’t happen… 

o .. With primitives 

o With immutable objects 

o If x stores/returns copies of the 

object 

 

Don’t break your own 
window, yo. 



Are references always bad? 
• Not always 

• Immutable objects – client can’t do any harm 

• Collections: client may want the original object 

back, not a copy 

• Collections: copying every 

     item can get expensive 

 

Sharing is OK sometimes! 


