

CSE 331 Section 5

Jackson Roberts

CSE 331 Spring 2012
April 26, 2012

Includes materials from Krysta Yousoufian, Marty Stepp, David Notkin and Joshua Bloch's Effective Java.

Java Generics

Homework Questions

 HW3: Lingering questions?

 HW4:
 What was difficult or problematic?
 What did you find valuable?
 Any topics you would like to see covered?

Commenting

 Have a look at the Java Style Guide on the course website.

 Clarity is the primary goal of comments.

 Know your audience: Other programmers!

 Good code is usually readable with few comments.

 Javadoc can be verbose out of necessity, but should be as
concise as possible.

Generics

(Example code will be posted on the course website)

Generic Types

 Each generic type defines a set of parameterized types.

 Syntax: public class ClassName<GENERIC PARAMS>

 List<E> defines List<Color>, List<String>, etc.

 Generic type information is lost during run-time:
List<String>.class; // Compile Error!

List<String> foo = new ArrayList<String>();

foo instanceof List<String>; // Compile Error!

foo instanceof List; // Evaluates to true

 Raw types (i.e. List, Set) behave like normal Java objects,
but should never be used in new code.

Generics and Arrays

 Generic types in Java are invariant; Arrays are covariant.

 Integer[] is a Java subtype of Number[]

 List<Integer> is not a Java subtype of List<Number>

 Arrays are reified – they enforce element types at runtime.

 As a result, implementing generic types using arrays is
complicated.

 Necessary casting eliminates compile-time type checking.

 Type safety must be proven manually.

 Effective Java c.5 describes all of the messy details.

 Use lists instead, unless you truly need an array.

Generic Methods

 Use generics without creating a generic type.

 A generic method uses some unknown type (i.e. a
parameter or return value)

 To declare a method as generic, put <E> (or <T> or …)
before the return type:

public static <E> void add(Set<E> items, E element)

public static <T> Set<T> union (Set<T> s1, Set<T> s2)

 Example: SetUtils.union()

Generic Wildcards

 You have an object of a generic type, but don't care what its
type parameter is.

 You care that you have a Set

 You don't care if you have a Set<String> vs. Set<Integer>

 Usage:

 Use <?> instead of <E>

 Why not use raw type Set instead of wildcard Set<?> ?

 (Almost) never use raw types – they aren't type safe!

 Example: SetUtils.intersectionCount()

When Not To Use Wildcards

 Type parameters which are used elsewhere.

 As return types for methods.

 Set<?> and Set<Object> are not the same.

 Read Set<?> as "Set of some arbitrary type."

 Examples:

 union() creates new Set<E>

 addAll() adds items

Bounded Wildcards

 Extends

 Syntax: Set<? extends Foo>

 Requires type Foo, or any subtype of Foo

 Example: unionBetter()

 Super

 Syntax: Set<? super Foo>

 Requires type Foo, or any supertype of Foo

 Example: addAllBetter()

PECS

 "Producer-extends, Consumer-super"

 In general...

 Producer methods should use <? extends T> for generic
parameters.

 Consumer methods generally should use <? super T> for
generic parameters.

 PECS helps prevent unnecessary restrictions on generic
parameters.

 Bottom line: Make your ADT parameters as flexible as
possible. This includes type parameters.

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

