

CSE 331 Section 5

Jackson Roberts

CSE 331 Spring 2012
April 26, 2012

Includes materials from Krysta Yousoufian, Marty Stepp, David Notkin and Joshua Bloch's Effective Java.

Java Generics

Homework Questions

 HW3: Lingering questions?

 HW4:
 What was difficult or problematic?
 What did you find valuable?
 Any topics you would like to see covered?

Commenting

 Have a look at the Java Style Guide on the course website.

 Clarity is the primary goal of comments.

 Know your audience: Other programmers!

 Good code is usually readable with few comments.

 Javadoc can be verbose out of necessity, but should be as
concise as possible.

Generics

(Example code will be posted on the course website)

Generic Types

 Each generic type defines a set of parameterized types.

 Syntax: public class ClassName<GENERIC PARAMS>

 List<E> defines List<Color>, List<String>, etc.

 Generic type information is lost during run-time:
List<String>.class; // Compile Error!

List<String> foo = new ArrayList<String>();

foo instanceof List<String>; // Compile Error!

foo instanceof List; // Evaluates to true

 Raw types (i.e. List, Set) behave like normal Java objects,
but should never be used in new code.

Generics and Arrays

 Generic types in Java are invariant; Arrays are covariant.

 Integer[] is a Java subtype of Number[]

 List<Integer> is not a Java subtype of List<Number>

 Arrays are reified – they enforce element types at runtime.

 As a result, implementing generic types using arrays is
complicated.

 Necessary casting eliminates compile-time type checking.

 Type safety must be proven manually.

 Effective Java c.5 describes all of the messy details.

 Use lists instead, unless you truly need an array.

Generic Methods

 Use generics without creating a generic type.

 A generic method uses some unknown type (i.e. a
parameter or return value)

 To declare a method as generic, put <E> (or <T> or …)
before the return type:

public static <E> void add(Set<E> items, E element)

public static <T> Set<T> union (Set<T> s1, Set<T> s2)

 Example: SetUtils.union()

Generic Wildcards

 You have an object of a generic type, but don't care what its
type parameter is.

 You care that you have a Set

 You don't care if you have a Set<String> vs. Set<Integer>

 Usage:

 Use <?> instead of <E>

 Why not use raw type Set instead of wildcard Set<?> ?

 (Almost) never use raw types – they aren't type safe!

 Example: SetUtils.intersectionCount()

When Not To Use Wildcards

 Type parameters which are used elsewhere.

 As return types for methods.

 Set<?> and Set<Object> are not the same.

 Read Set<?> as "Set of some arbitrary type."

 Examples:

 union() creates new Set<E>

 addAll() adds items

Bounded Wildcards

 Extends

 Syntax: Set<? extends Foo>

 Requires type Foo, or any subtype of Foo

 Example: unionBetter()

 Super

 Syntax: Set<? super Foo>

 Requires type Foo, or any supertype of Foo

 Example: addAllBetter()

PECS

 "Producer-extends, Consumer-super"

 In general...

 Producer methods should use <? extends T> for generic
parameters.

 Consumer methods generally should use <? super T> for
generic parameters.

 PECS helps prevent unnecessary restrictions on generic
parameters.

 Bottom line: Make your ADT parameters as flexible as
possible. This includes type parameters.

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

