UNIT TESTING

Krysta Yousoufian
CSE 331 Section
April 19, 2012

With material from Marty Stepp, David Notkin, and The
Pragmatic Programmer

JuUunit Semantics

How to write a technically correct JUnit test

A JUnit test class

import org.junit.*;
import static org.junit.Assert.*;

public class name {

@Test
public void name() { // a test case method

}

- Amethod with @Test Is flagged as a JUnit test case.
- All @Test methods run when JUnit runs your test class.

Verifying Behavior with Assertions

Assertions: special JUnit methods

Verifies that a value matches expectations
assertEquals (42, meaningOfLife()),; < failsif meaningOfLife() =42
assertTrue (list.isEmpty()) ; < fails if list.isEmpty() is false

If the value isn’t what it should be, the test fails
Test immediately terminates

Other tests In the test class are still run as normal
Results show details of failed tests

Using Assertions

assertTrue (test) fails if the boolean testis false
assertFalse (test) fails if the boolean test is true
assertEquals (expected, actual) fails if the values are not equal
assertSame (expected, actual) fails if the values are not the same (by ==
assertNotSame (expected, actual) fails if the values are the same (by ==)
assertNull (value) fails if the given value is not null
assertNotNull (value) fails if the given value is null

And others: http://www.junit.org/apidocs/org/junit/Assert.html

Each method can also be passed a string to display if it fails:
e.J. assertEquals ("message", expected, actual)

http://www.junit.org/apidocs/org/junit/Assert.html

Checking for Exceptions

Verify that a method throws an exception when it should
Place above method:
@Test (expected=I1llegalArgumentException.class)

Test passes if specified exception is thrown, fails otherwise
Only time it’'s OK to write a test with no asserts!

// Try to access the first item in an empty ArrayList
@Test (expected=IndexOutOfBoundsException.class)
public void test () {

List<String> list = new ArrayList<String>();
list.get (0);

Setup and Teardown

- Methods to run before/after each test case method is called:

@Before

public void name() { ... }
@QAfter

public void name() { ... }

- Methods to run once before/after the entire test class runs:

@BeforeClass

public static void name() { ... }
@QAfterClass

public static void name() { ... }

Don’t Repeat Yourself (let me repeat that...)

JUnit tests are just regular Java code!
Can declare fields for frequently-used values or constants

private static final String DEFAULT NAME = “MickeyMouse”;
private static final User DEFAULT USER =

new User (“lazowska”, “Ed”, “Lazowska”);

Can write helper methods, etc.
private void eg(RatNum ratNum, String rep) {

assertEquals (rep, ratNum.toString());

}

private BinaryTree getTree (int[] 1tems) {

// construct BinaryTree and add each element in items

Unit Test Best Practices

How to craft well-written JUnit tests

#1:. Use descriptive asserts, test names

When a test fails, JUnit tells you:
Name of test method
Message passed into failed assertion
Expected and actual values of failed assertion

The more descriptive this information is, the easier it is to
diagnose failures

Avoid System.out.printin()

Want any diagnostic info to be captured by JUnit and associated
with that test method

#1:. Use descriptive asserts, test names

Test name: describe what's being tested
Good: “testAddDaysWithinMonth,” ...
Not so good: “testAddDays1,” “testAddDays2,” ...
Useless: “test1,” “test2,” ...

Overkill:
“testAddDaysOneDayAndThenFiveDaysThenNegativeFourDaysSt
artingOnJanuaryTwentySeventhAndMakeSureltRollsBackToJanuar

yAfterRollingToFebruary()”

#1: Use descriptive asserts, test names

Assertions: take advantage of expected & actual values
Make sure you have the right order:

assertEquals (message, expected, actual)

Use the right assert for the occasion:

assertEquals (expected, actual) instead of
assertTrue (expected.equals (actual))

(why?)

assertTrue (b) Instead of assertEquals (true, b)
(why?)

#1:. Use descriptive asserts, test names

Assertion message: contribute new information
No need to repeat expected/actual values or info in test name
e.g. details of what happened before the failure

Example:

@Test
public void test addDays wrapToNextMonth ()
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);
assertEquals ("date after +14 days", expected, actual);

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months
@Test
public voild testAddDaysWrapToNextMonth () |
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,
actual) ;

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a roll .
Y Descriptive method

@Test name
public void estAddDaysWrapToNextMontEil:)
Date actual = new Date(2050, Z, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,
actual) ;

L
Let’s put it all together!

public class DateTest {

// Teq Tells JUnit that this ses a rollover between months
@method is a test to run
public voild testAddDaysWrapToNextMonth () |
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,
actual) ;

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months
@Test
public void testAddDavsWranToNextMonth () {
Dat Meth_od names desprlbe 15) ;
function of each object
actual.addDays (147 ;

Dat= new Date (2050, 3, 1);

assertEquals ("date after +14 days", expected,

actual) ;

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months
@Test
public voild testAddDaysWrapToNextMonth () |
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;

Date expectqyse assertion to check | 37 1)/
@sertEqual: expected results ays", expected,

actual) ;

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months

@Test
public voild testAddDaysWrapToNextMonth () |

Date actual = new Date (2050, 2, I :
Message gives

actual.addDays (14); details about the

Date expected = new Date (2050, 3, testincase of
failure

assertEquals(t@EEe after +14 daytF——0peeeeey
actual) ;

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months
@Test
public voild testAddDaysWrapToNextMonth () ({
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;

Expected value first,
Date expected = new Dgq actual value second

assertk "date after +14 days"<:§%pected,:::>
actual) ;

L
Let’s put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months
@Test
public voild testAddDaysWrapToNextMonth () |
Date actual = new Date (2050, 2, 15);
actual.addDays (14) ;
Date expected = new Date (2050, 3, 1);

——— "date after +14 days", expected,
That’s it! Test is Y P

Cshort & sweet
}

#2. Keep tests small

|deally, each test only tests one “thing”
One “thing” usually means one method under one input condition

Low-granularity tests help you isolate bugs
Tell you exactly what failed and what didn't

Only a few (likely one) assert statements per test
Test halts after first failed assertion
Don’t know whether later assertions would have failed

Where possible, only test one method at a time

Not always possible — but if you test x () using y (), try to test y ()
In isolation in another test

E.g. if youtest add () using contains (), separately test
contains () before any items are added

D
What NOT to do

- IntArrayTest
- What's wrong?

section4-src/IntArrayTest.java

D
What NOT to do

- IntArrayTest
- What's wrong?

- testintArray tests way too many things
- Too many methods, array states

- Solution: break down by method being tested and/or state
of array

- IntArray TestBetter

section4-src/IntArrayTest.java
section4-src/IntArrayTestBetter.java

S
#3. Choose the right tests

- Given a finite number of tests, want reasonable
confidence in an infinite number of inputs

- Input = initial state of object + method arguments + ...

#3. Choose the right tests

For each method, ask: what are the equivalence classes?
Items in a collection: none, one, many

Write a test for each equivalence class

Consider common input categories
Math.abs (): negative, zero, positive values

Consider boundary cases
Inputs on the boundary between equivalence classes
Person.isMinor(): age < 18, age == 18, age > 18
Consider edge cases
-1,0, 1, empty list, arr.length, arr.length-1

Consider error cases
Empty list, null object

Other guidelines

Test all methods
Caveat: constructors don’t necessarily need explicit testing
Keep tests simple — avoid complicated logic
minimize if/else, loops, switch, etc.
Don’t want to debug your tests!
Tests should always have at least one assert
Unless testing that an exception is thrown

Simply testing that an exception is not thrown is not necessary
assertTrue (true) ; doesn’t count!

Other guidelines

Tests should be isolated
Not dependent on side effects of other tests
Should be able to run in any order

Use helper methods to factor out common operations
E.g. setting up initial state of an object

L
Example: Date

- public
- public
- public
- public
- public
 public
- public
- public
- public
 public

Date (int year, int month, 1int day)

Date () // today

int getDay (), getMonth (), getYear ()

void addDays (int days) // advances by days
int daysInMonth ()

String dayOfWeek () // e.g. "Sunday"

boolean equals (Object 0)

boolean 1sLeapYear ()

void nextDay () // advances by 1 day
String toString/()

- Come up with unit tests to check the following:
- That no Date object can ever get into an invalid state.

- That the addDays method works properly.
- It should be efficient enough to add 1,000,000 days in a call.

L
Example: IntStack

- What tests should we write?

section4-src/IntStack.html

More examples

- How would we test the following Collections interface
methods:

- Collections.binarySearch
- Collections.sort

- (Assume the List we pass in has already been tested)

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html

Junit Summary

Tests need failure atomicity (ability to know exactly what
failed).
Each test should have a descriptive name.

Assertions should have clear messages to know what failed.
Write many small tests, not one big test.

Test for expected errors / exceptions.

Choose a descriptive assert method, not always
assertTrue.

Choose representative test cases from equivalent input
classes.

Avoid complex logic in test methods if possible.

Use helpers, @Before to reduce redundancy between
tests.

