
Specifications

Krysta Yousoufian

CSE 331 Section

April 12, 2012

With material from Michael Ernst and Hal Perkins

Recall: Class Specifications

 Describe abstract value: what the class
represents at an abstract level

◦ What the client sees

◦ What data the ADT holds

 Brief summary of the ADT

 Specfields: data fields of the ADT
◦ e.g. length of Square

 Derived fields: data fields that can be
computed from the spec fields

◦ e.g. area = length^2 of Square

Example 1: Complex Number

 Specify a ComplexNumber class

 Represents number a+bi

 What are the abstract fields?

◦ (What data does this

 class contain from the

 client’s perspective?)

Complex Number

 Specify a ComplexNumber class

 Represents number a+bi

 What are the abstract fields?

◦ Real part, a

◦ Imaginary part, b

Let’s formalize it

/**

 * ?????????????

 */

public class ComplexNumber {

 ...

}

(formal…?)

Let’s formalize it

/**

 * ?????????????

 */

public class ComplexNumber {

 ...

}

(formal…?)

We don’t need to

know internal rep. to

write client specs

(why?)

Let’s formalize it

/**

 * ?????????????

 */

public class ComplexNumber {

 ...

}

(formal…?)

We don’t need to

know internal rep. to

write client specs

(why?)

See ComplexNumber1.java

section3-src/ComplexNumber1.java

Recall: Abstraction Function

 Specfields may not map directly to

representation fields

◦ Square has length specfield but not

necessarily private int length;

 Internal representation can be anything as

long as it somehow encodes the abstract

value / specfields

 Abstraction function: a mapping from

internal state to abstract value

Recall: Representation Invariant

 Constrains an object’s internal state

 Defines what must be true for abstraction

function to hold

 If representation invariant is violated:

◦ Object is “broken” – doesn’t map to any

abstract value

Let’s implement ComplexNumber

 Complex number often represented as point in

Cartesian coordinate plane

 Possible representations:

 (x, y) (theta, r)

. . x

y
r

theta

(a,b)
(a,b)

 Cartesian coordinates Polar coordinates

Implementation #1: Cartesian

 (x,y) coordinates

◦ x + yi

 What is the AF?

 What is the RI?

x

y

(a,b) .

Implementation #1: Cartesian

 (x,y) coordinates

◦ x + yi

 What is the AF?

 What is the RI?

◦ RI is true – object cannot be in an invalid

state!

 See ComplexNumber1.java

x

y

(a,b)

section3-src/ComplexNumber1.java

Implementation #2: Polar

 (theta, r)

◦ a: rad * cos(theta)

◦ b: rad * sin(theta)

 What is the AF?

 What is the RI?

 What should go in checkRep()?

.
r

theta

(a,b)

Implementation #2: Polar

 (theta, r)

◦ a: rad * cos(theta)

◦ b: rad * sin(theta)

 What is the AF?

 What is the RI?

 What should go in checkRep()?

 See ComplexNumber2.java

.
r

theta

(a,b)

section3-src/ComplexNumber2.java

Example 2: Circle

 Circle on the Cartesian coordinate plane

.

Circle: Class Specification

What are the abstract

fields?
.

r

center

Circle: Class Specification

What are the abstract

fields?

 Center point

 Radius

 Properties derived from

these fields:

circumference, area

.
r

center

Let’s formalize it

/**

 * ?????????????

 */

public class Circle {

 ...

}

(formal…?)

Let’s formalize it

/**

 * ?????????????

 */

public class Circle {

 ...

}

 See Circle1.java

(formal…?)

section3-src/Circle1.java

Writing AF, RI: Implementation 1

 Store center, radius directly

 Write the abstraction function, rep. invariant

 Circle1.java

.
center

section3-src/Circle1.java

Writing AF, RI: Implementation 2

 Store center, edge point

 Write the abstraction function, rep. invariant

 Circle2.java

.
center

. edge

section3-src/Circle2.java

Writing AF, RI: Implementation 3

 Store corners of square inscribed in circle

 Write the abstraction function, rep. invariant

 Circle3.java

.

. corner1

corner2

.

section3-src/Circle3.java

Example 3: Map

 Collection of <key, value> pairs

 Perform lookups by key

 What does the client see?

Example 3: Map

 Collection of <key, value> pairs

 Perform lookups by key

 What does the client see?

◦ A collection of elements with some special

properties – doesn’t really have “specfields”

◦ See IntTreeMap.java

section3-src/IntTreeMap.java

Implementation: IntTreeMap

 DISCLAIMER: when using a map, TreeMaps

are almost never what you want!

 HashMaps have much better performance

 But TreeMaps make a better AF/RI

example here

Method Specifications

Precondition @requires

determines the

conditions under which

the method may be

invoked

Frame Condition @modifies

a list of specfields

identifying what might

be modified by the

method

Postcondition
@return

describes the value that

gets returned, if any

@throws

each of these lists an

exception and the

conditions under which

it will be thrown

@effects

any side effects that may

result from invoking the

method

General Guidelines

 Javadoc specs (/** … */) are external
documentation
◦ Visible to the client

◦ Can be used to generate code-free documentation
pages (e.g. Java API)

 So, Javadoc should only refer to what the
client sees
◦ Specfields / abstract value

◦ Never instance fields or other internal details

 When referring to implementation details,
use regular comments (//)
◦ This includes AF and RI

http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html

General Guidelines, cont.

 Specs exist to help humans understand

your code

 Crucial that they are easy to read and

understand

 Be precise but concise

 Use formal mathematical notation or

plain English – whichever is easier to

understand

