
Specifications

Krysta Yousoufian

CSE 331 Section

April 12, 2012

With material from Michael Ernst and Hal Perkins

Recall: Class Specifications

 Describe abstract value: what the class
represents at an abstract level

◦ What the client sees

◦ What data the ADT holds

 Brief summary of the ADT

 Specfields: data fields of the ADT
◦ e.g. length of Square

 Derived fields: data fields that can be
computed from the spec fields

◦ e.g. area = length^2 of Square

Example 1: Complex Number

 Specify a ComplexNumber class

 Represents number a+bi

 What are the abstract fields?

◦ (What data does this

 class contain from the

 client’s perspective?)

Complex Number

 Specify a ComplexNumber class

 Represents number a+bi

 What are the abstract fields?

◦ Real part, a

◦ Imaginary part, b

Let’s formalize it

/**

 * ?????????????

 */

public class ComplexNumber {

 ...

}

(formal…?)

Let’s formalize it

/**

 * ?????????????

 */

public class ComplexNumber {

 ...

}

(formal…?)

We don’t need to

know internal rep. to

write client specs

(why?)

Let’s formalize it

/**

 * ?????????????

 */

public class ComplexNumber {

 ...

}

(formal…?)

We don’t need to

know internal rep. to

write client specs

(why?)

See ComplexNumber1.java

section3-src/ComplexNumber1.java

Recall: Abstraction Function

 Specfields may not map directly to

representation fields

◦ Square has length specfield but not

necessarily private int length;

 Internal representation can be anything as

long as it somehow encodes the abstract

value / specfields

 Abstraction function: a mapping from

internal state to abstract value

Recall: Representation Invariant

 Constrains an object’s internal state

 Defines what must be true for abstraction

function to hold

 If representation invariant is violated:

◦ Object is “broken” – doesn’t map to any

abstract value

Let’s implement ComplexNumber

 Complex number often represented as point in

Cartesian coordinate plane

 Possible representations:

 (x, y) (theta, r)

. . x

y
r

theta

(a,b)
(a,b)

 Cartesian coordinates Polar coordinates

Implementation #1: Cartesian

 (x,y) coordinates

◦ x + yi

 What is the AF?

 What is the RI?

x

y

(a,b) .

Implementation #1: Cartesian

 (x,y) coordinates

◦ x + yi

 What is the AF?

 What is the RI?

◦ RI is true – object cannot be in an invalid

state!

 See ComplexNumber1.java

x

y

(a,b)

section3-src/ComplexNumber1.java

Implementation #2: Polar

 (theta, r)

◦ a: rad * cos(theta)

◦ b: rad * sin(theta)

 What is the AF?

 What is the RI?

 What should go in checkRep()?

.
r

theta

(a,b)

Implementation #2: Polar

 (theta, r)

◦ a: rad * cos(theta)

◦ b: rad * sin(theta)

 What is the AF?

 What is the RI?

 What should go in checkRep()?

 See ComplexNumber2.java

.
r

theta

(a,b)

section3-src/ComplexNumber2.java

Example 2: Circle

 Circle on the Cartesian coordinate plane

.

Circle: Class Specification

What are the abstract

fields?
.

r

center

Circle: Class Specification

What are the abstract

fields?

 Center point

 Radius

 Properties derived from

these fields:

circumference, area

.
r

center

Let’s formalize it

/**

 * ?????????????

 */

public class Circle {

 ...

}

(formal…?)

Let’s formalize it

/**

 * ?????????????

 */

public class Circle {

 ...

}

 See Circle1.java

(formal…?)

section3-src/Circle1.java

Writing AF, RI: Implementation 1

 Store center, radius directly

 Write the abstraction function, rep. invariant

 Circle1.java

.
center

section3-src/Circle1.java

Writing AF, RI: Implementation 2

 Store center, edge point

 Write the abstraction function, rep. invariant

 Circle2.java

.
center

. edge

section3-src/Circle2.java

Writing AF, RI: Implementation 3

 Store corners of square inscribed in circle

 Write the abstraction function, rep. invariant

 Circle3.java

.

. corner1

corner2

.

section3-src/Circle3.java

Example 3: Map

 Collection of <key, value> pairs

 Perform lookups by key

 What does the client see?

Example 3: Map

 Collection of <key, value> pairs

 Perform lookups by key

 What does the client see?

◦ A collection of elements with some special

properties – doesn’t really have “specfields”

◦ See IntTreeMap.java

section3-src/IntTreeMap.java

Implementation: IntTreeMap

 DISCLAIMER: when using a map, TreeMaps

are almost never what you want!

 HashMaps have much better performance

 But TreeMaps make a better AF/RI

example here

Method Specifications

Precondition @requires

determines the

conditions under which

the method may be

invoked

Frame Condition @modifies

a list of specfields

identifying what might

be modified by the

method

Postcondition
@return

describes the value that

gets returned, if any

@throws

each of these lists an

exception and the

conditions under which

it will be thrown

@effects

any side effects that may

result from invoking the

method

General Guidelines

 Javadoc specs (/** … */) are external
documentation
◦ Visible to the client

◦ Can be used to generate code-free documentation
pages (e.g. Java API)

 So, Javadoc should only refer to what the
client sees
◦ Specfields / abstract value

◦ Never instance fields or other internal details

 When referring to implementation details,
use regular comments (//)
◦ This includes AF and RI

http://docs.oracle.com/javase/6/docs/api/index.html?overview-summary.html

General Guidelines, cont.

 Specs exist to help humans understand

your code

 Crucial that they are easy to read and

understand

 Be precise but concise

 Use formal mathematical notation or

plain English – whichever is easier to

understand

