
Design Patterns:
The Sequel!

Krysta Yousoufian

CSE 331

With material from Hal Perkins, David Notkin, Michael
Ernst, Marty Stepp, and Joshua Bloch (Effective Java)

A Note
We didn’t cover these examples in class (except

singleton briefly in the 8:30 section) and you are not

held responsible for their content. They are purely

optional content for your intellectual curiosity or to

help you understand the lecture concepts better.

File Server & Logger

File Server
• Allows clients to read files across a network

o (For simplicity, ignore writes)

• Server…

o …accepts a request from a client

o …loads requested file

o …sends contents back to client

o …logs activity via logger

o …repeat

File Server
• Allows clients to read files across a network

o (For simplicity, ignore writes)

• Server…

o …accepts a request from a client

o …loads requested file

o …sends contents back to client

o …logs activity via logger

o …repeat

File Server
• Requests handled via ClientHandler

• Several ClientHandlers run simultaneously in

separate threads

• Problem: every ClientHandler has its own logger

object for writing to the log

o (Almost) simultaneous writes  overwrite each other’s

changes

• How do we solve this?

Singleton
• One shared instance of a class

• Use for:

o Global state; coordinating among objects or threads

o Often lower-level tasks (e.g. hardware interaction)

• Don’t use for:

o Managing state/data specific to each use (instance fields)

• Examples: logger, window manager

Implementing Singleton
• Always make constructor private

• Several options(Effective Java pp. 18+):

1. Private static instance accessed with

getInstance()

2. Public static instance accessed directly

3. Enum

Singleton with Logger

Word
(Text example, revisited)

Word
• Last time: Book, Chapter, Paragraph

• Want to break down further: Sentence, Word

• Creating an object for every word in the book takes

up too much space

• What do we do?

Interning
• Cache existing objects

• Don’t allow client to create objects directly

o Private constructor

• When the client requests a value:

o If an object with that value exists, return it

o Else, create it, add it to the existing objects, and return it

• Only works for immutable data (why?)

Interning with Word

Word II
• Need Word to point to previous and next Words in

sentence

• What problems does this cause?

• How can we fix it?

Flyweight
• Use when:

o Objects are almost the same… but not quite

o Most state is shared and can be interned

o But some state are mutable or too specific to be

shared among many objects

• Caution:

o Flyweight makes your code messy and harder to

use

o Only use if memory usage is a demonstrated

problem for your program

Implementing flyweight
• Remove extrinsic (non-shared) state from objects

• Client keeps track of the extrinsic state

o (“Client” = another ADT, a main program, …)

• Accept extrinsic fields as method arguments where

needed

• Then intern the objects as usual

Flyweight with Word

