
Reasoning
About ADTs

Krysta Yousoufian

CSE 331

Code Examples
• See package induction_examples for all the code

for these examples.

Uses of reasoning
• Testing can only go so far

o Can’t test every set of operations on every object

• Reasoning can prove correctness over all

operations, objects

Proof by Induction
• Want to prove some property P about an object

• Base case

Prove that P holds for newly-constructed object

• Inductive step

Prove that if P holds for an object O, it holds after

any operation on O

Verifying Rep Invariant
• Verify that rep invariant is always satisfied

• Reason about implementation (instance fields)

• Base case: Prove that RI holds after constructor

• Inductive step: Prove that if RI holds going into any

method, it holds going out

BankAccount

// Rep invariant:

// transactions contains no null values

// the sum of all values in transactions

// is >= 0

See BankAccount.java

section10-src/BankAccount.java

BankAccount
• Base case:

o transactions is empty => no null values

o Transactions is empty => sum of values is 0

BankAccount
Base case:

o transactions is empty => no null values

o transactions is empty => sum of values is 0

Inductive case: assume RI holds on entering method

• getBalance():

o Doesn’t modify transactions, so RI is preserved.

BankAccount
Inductive case:

• performTxn():

o getBalance() returns the sum of amounts in

transactions

o Case 1: current sum of transactions + amount of

txn < 0. transactions is unchanged, so RI still holds.

o Case 2: current sum of transactions + amount of

txn >= 0. Therefore, adding txn will not make the

sum negative. We also verified that txn is not null.

The only change to transactions is that txn is

added, so the RI still holds.

Verifying Client Code
• Verify that client code behaves correctly

• Want to prove some statement P about the object

o e.g. abstract invariant

• Reason about specification (abstract fields)

• Assume implementation meets the specs

• Base case: Prove that P holds after constructor

• Inductive step: Prove that if P holds going into any

method, it holds going out

• Can ignore observer methods

BankAccount

/**

 * Abstract invariant: balance >= 0

 */

See BankAccount.java

section10-src/BankAccount.java

BankAccount
• P(X) = X.balance >= 0

• Want to prove P(S) for all S

• Base case: S was created by constructor

o After constructor, balance = 0 , so P(S) holds

BankAccount
• P(X) = X.balance >= 0

• Want to prove P(S) for all S

• Inductive case: S was created by a call of the form

“T.performTxn(txn)”:

o Assume P(T) (inductive hypothesis), prove P(S)

Remember to state this!
It’s the crux of the whole

proof.

BankAccount
• P(X) = X.balance >= 0

• Want to prove P(S) for all S

• Inductive case: S was created by a call of the form

“T.performTxn(txn)”:

o Assume P(T) (inductive hypothesis), prove P(S)

BankAccount
• P(X) = X.balance >= 0

• Want to prove P(S) for all S

• Inductive case: S was created by a call of the form

“T.performTxn(txn)”:

o We assume P(T) (inductive hypothesis) and will

prove P(S)

o Case 1: balance is left unchanged.

• T.balance = S.balance, so P(S) holds by

inductive hypothesis or assumption that P(T)

BankAccount
• P(X) = X.balance >= 0

• Want to prove P(S) for all S

• Inductive case: S was created by a call of the form
“T.performTxn(txn)”:

o We assume P(T) (inductive hypothesis) and will
prove P(S)

o Case 1: balance is left unchanged.

• T.balance = S.balance, so P(S) holds by
inductive hypothesis or assumption that P(T)

o Case 2: balance = balance + txn.amount.

• Only enter this case if balance + txn.amount
>= 0. Therefore, new balance will be >= 0 and
P(S) holds

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree

rooted at left are < data and all values in tree

rooted at right are > data

See TreeSet.java

section10-src/TreeSet.java

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree rooted at

left are < data and all non-null values in tree rooted

at right are > data

Base case: S was created by constructor

• data == null, left == null, right == null

• #1 holds because data == null and (left == null and

right == null)

• #2 holds trivially because !(data != null)

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree rooted at

left are < data and all non-null values in tree rooted

at right are > data

Inductive case: assume RI holds on entering method

• contains(): never modifies anything, so RI is

preserved

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree rooted at

left are < data and all non-null values in tree rooted

at right are > data

Inductive case:

• add(): four cases:

o Case 1: val == null. Object is unchanged, so RI is preserved

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree rooted at

left are < data and all non-null values in tree rooted

at right are > data

Inductive case:

• add(): four cases:

o Case 1: val == null. Object is unchanged, so RI is preserved

o Case 2: data == null. data is assigned to val (which is non-

null) and left and right are initialized, so #1 holds. left and
right contain only null values immediately after

construction, and no other values are added, so #2 holds.

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree rooted at

left are < data and all non-null values in tree rooted

at right are > data

Inductive case:

• add(): four cases:
o Case 3: data != null and val.compareTo(data) < 0, i.e. val <

data.

o Because we assume the RI holds going in, initially data !=
null, left != null, and right != null. None of these values are
reassigned, so #1 holds.

o The only possible change is that val and two empty nodes
are added to the left subtree. Because val < data and
empty nodes contain only nulls, the first clause of #2 is
preserved. Because the right subtree is unchanged, the
second clause of #2 is preserved.

TreeSet: prove RI
1. data == null iff (left == null and right == null)

2. If data != null, all non-null values in tree rooted at

left are < data and all non-null values in tree rooted

at right are > data

Inductive case:

• add(): four cases:

o Case 4: data != null and val.compareTo(data) > 0, i.e. val >

data.

o (Prove analogously to Case #3)

TreeSet: prove client code
• Verify that a value is contained in TreeSet iff it has

been added to the TreeSet at least once.

See TreeSet.java

section10-src/TreeSet.java

TreeSet: prove client code
• P(X) = for all values v, v ∈ X iff
X.add(v) was called at some point

• Want to prove P(S) for all S

TreeSet: prove client code
• P(X) = for all values v, v ∈ X iff
X.add(v) was called at some point

• Want to prove P(S) for all S

• Base case: S was created by constructor

o After constructor, S is an empty set and there

have been no calls to add, so P(S) holds

TreeSet: prove client code
• P(X) = for all values v, v ∈ X iff
X.add(v) was called at some point

• Inductive case: S was created by a call of the form

“T.add(v)”:

o We assume P(T) (inductive hypothesis) and will

prove P(S)

o Case 1: S = T. Only occurs if v ∈ T and thus v ∈ S.

Because P(T) holds (by the inductive hypothesis),
S = T, and v ∈ S, P(S) must also hold.

TreeSet: prove client code
• P(X) = for all values v, v ∈ X iff
X.add(v) was called at some point

• Inductive case: S was created by a call of the form
“T.add(v)”:

o We assume P(T) (inductive hypothesis) and will
prove P(S)

o Case 1: S = T. Only occurs if v ∈ T and thus v ∈ S.
Because P(T) holds (by the inductive hypothesis),
S = T, and v ∈ S, P(S) must also hold.

o Case 2: S = T U v. We know v ∈ S by the definition
of union, so the newly-added value is contained
in S. We know P(T) by the inductive hypothesis,
and the only change between T and S is the
union with v, so P(S) also holds.

IntQueue
• Remember IntQueue1 and IntQueue2 from HW4?

• Prove rep invariant

• Prove that values are contained in the order they

were added by the user

