
STUDENT NAME: ___

CSE331 11AU MIDTERM Page 1

CSE331 Autumn 2011 Final Examination
December 14, 2011

• This is intended to be a second midterm rather than a comprehensive final.

(Connections to material on the first midterm are reasonable, of course.)
• You may take the entire 110 minutes allocated for the final, but it is intended to be

finished in 50-60 minutes.
• Open note, open book, closed neighbor, closed anything electronic (computers, web-

enabled phones, etc.)
• An easier-to-read answer makes for a happier-to-give-partial-credit grader

Don’t turn the page until the proctor gives the go ahead!

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 2

Part I: True/False with brief explanation (30 points total)
[Each question: 2 points T/F, 1 point explanation]

1) All other things being equals, a client generally prefers to call a method with a weaker precondition
than a method with a stronger precondition.

2) Consider a class A with one constructor C, three methods M1, M2, and M3, and representation invariant
RI. Proving the following properties would ensure that the RI always holds:

• true{C}RI
• RI{M1}RI
• RI{M2}RI
• RI{M3}RI

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 3

3) The midterm included a question based on the following safe – hashCode is safe if equal objects
always have equal hashCode values – definition of hashCode for the Duration class:

public int hashCode() {
 return sec*min;
}

T/F: Proving the Hoare triple
 true{hashCode.return = sec*min}0≤hashCode.return≤3600
guarantees that this hashCode function is indeed safe. (hashCode.return simply refers to the return
value of the function.)

4) The catch blocks that will be executed when any exception is raised at run-time can be determined by
inspecting Java source code without running the program.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 4

5) If a program P satisfies a specification S, then any test run on P will succeed.

6) Java interfaces allow substitutability at run-time, while Java generics allow substitutability at compile-
time.

7) A representation invariant for an immutable object must hold at all times during program execution
except during execution of the constructor of that object.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 5

8) Consider a Java program that uses generic Collections. It is possible to automatically convert this
program to an equivalent one that does not use generic Collections.

9) An advantage of explicitly considering an abstraction function and a representation invariant is that this
simplifies debugging.

10) When a regression test fails, the programmer must change the program being tested.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 6

Part II (20 points total)

Part II.A (10 points) The Hoare rule describing a standard while loop is:

P{while B do S}Q

Proving a loop with this rule requires finding a loop invariant I and proving three sub-parts:

• P⇒I
• I∧B{S}I
• (I∧¬B)⇒Q

Consider the language construct repeat-until.

P{repeat S until B}Q

This defines a loop that executes S and then checks condition B: if B is false, the loop is repeated; if B is
true, the loop terminates.

Describe how to prove a repeat-until loop (using the description of the while loop above as a
general model).

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 7

Part II.B (10 points)

Consider the following program that accepts two integers A and B and computes BA.
A > 0 ∧ B ≥ 0 --This is the precondition
{
 m = A;
 n = B;
 p = 1;
 repeat
 p = p*n;
 m = m–1
 until m = 0
}
p == BA --This is the postcondition

Using the proof structure you defined in part A, prove that this loop is correct. You need not consider
termination at all – that is, simply focus on weak correctness. (If are really uncertain about your answer to
part A, you can – for a maximum of ½ credit on part B – using the same pre- and post-conditions, convert
the program to use a while loop instead of repeat-until and then prove it.)

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 8

Part III (15 points total)

State whether using design patterns, generics, or inheritance would be the best approach for each of the
following problems. Justify your answer in at most two sentences.

1. (8 points) A program includes a Java class that defines a static method implementing a clever
sorting algorithm over integer arrays that works especially well when sorting 1,000,000 or more
integers. Your boss asks you to modify the program to (a) use this method for 1,000,000+ long
integer arrays, (b) use quicksort for integer arrays from size 10 to 1,000,000, and (c) use
insertion sort for smaller arrays of integers. Would this change be constructed using design
pattern(s), generic(s), or inheritance? Why?

2. (7 points) A program is to accept a person’s age and determine what actions the person is
allowed to take based on the age, with more actions allowed as a person gets older. For
example, in the US a person is allowed to purchase cigarettes at 18, to purchase alcohol at 21, to
become a congressman at 25, to become a senator at 30, to become president at 35, and to join
AARP (American Association of Retired People) at 50. Would the core of this program be
constructed using design pattern(s), generic(s), or inheritance? Why?

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 9

Part IV (20 points total)

Consider the following piece of a Java program, which uses two buttons and sets up one listener (i.e., event
handler) for the first button and two listeners for the second button.

public class MultiListener ... implements ActionListener {
 ...
 //where initialization occurs:
 button1.addActionListener(this);
 button2.addActionListener(this);

 button2.addActionListener(new Eavesdropper(bottomTextArea));
 }

 public void actionPerformed(ActionEvent e) {
 topTextArea.append(e.getActionCommand() + newline);
 }
}

class Eavesdropper implements ActionListener {
 ...
 public void actionPerformed(ActionEvent e) {
 myTextArea.append(e.getActionCommand() + newline);
 }
}

The following figure shows the basics of executing the program: clicking the first button or the second
button appends the button’s title to the top text box, while clicking the second button appends the button’s
title in the bottom text box:

http://docs.oracle.com/javase/tutorial/uiswing/events/intro.html

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 10

1. (2 points) Does this represent conventional flow-of-control or inversion-of-control?
2. (3 points) What dependences exist between the MultiListener and Eavesdropper classes in

this code snippet? (As an example, if we wanted to know about the relationship between these
two classes and ActionListener, we would say that both of them implement the
ActionListener interface. But don’t include ActionListener in your answer – only
MultiListener and Eavesdropper.)

3. (5 points) Consider an added int count (say, declared globally), with count initialized to zero.
Also, code to increment that count field is added to the bodies of the two actionPerformed
methods (one in MultiListener, the other in Easedropper). In one or two sentences, explain
why count does not represent the total number of times either button is pressed. (Only consider
the value of count while the GUI is idle – that is, not during the execution of any of this code.)

4. (10 points) Assume you did want to count all button presses. Sketch a way to modify the original
program cleanly and effectively to achieve this. Make sure that the solution works even if
additional buttons and listeners are added; for example, simply incrementing count when
button1 is pushed is not clean or effective if another button is added that only appends to the
bottom text box.)

	CSE331 Autumn 2011 Final Examination December 14, 2011

