
CSE331 midterm review

Autumn 2010

Exam structure

• 50 minutes, in class – Matt will proctor

• Open note, open book, closed neighbor,
closed anything electronic (computers, web-
enabled phones, etc.)

• An easier-to-read answer makes for a happier-
to-give-partial-credit grader

More structure

• Three 15-minute equally weighted exam
sections

A. Specifications and subtyping

B. Abstract data types, representation invariants
and abstraction functions

C. Miscellaneous (mutability, testing, equality,
subclassing, …)

A. Specifications and subtyping

• Role of specifications – difference from
implementation

• Stronger vs. weaker specifications

• Java subtyping vs. true subtyping

A. Role of Specifications

• vs. code

• Two hats – implementer and client

– What are the different objectives when wearing
each hat?

A. Stronger and weaker

• There will be at least two questions about
comparing specifications in terms of strength
or weakness

– At least one will be abstract – that is, a question of
logic and mathematics without concern for
software per se

– At least one will concern this issue in the context
of software (that is, may include throws clauses,
etc.)

A. Key issues

A. Subtyping

• At least one question focused on whether a
specific Java subtype is or is not a true
subtype, and why

B. Abstract data types…

• Abstract data types, representation invariants
and abstraction functions

• ADTs provide a set of operations and
semantics over those operations

– Ex: A stack ADT that provides new, push, pop and
top operations – and some way of understanding
“stackness” (perhaps descriptions such as if push
succeeds then top returns the last pushed
element)

B. Implementations

• It is common to implement ADTs in
programming languages, most often OO
programming languages

• What is the relationship between the ADT and
the implementation?

B. Abstraction function

• The AF gives meaning to the representation of
data in the implementation

• This is a figure from
• The AF maps from

the representation to
the abstract values
and may be
many-to-one

• Why not abstract to
representation?

• AF formal or informal?

http://www.cs.cornell.edu/courses/cs3110/2009fa/lectures/lec08.html

B. Representation invariant

• These are constraints on the concrete
representation alone – only if this invariant is
true is there a guarantee that the AF makes
sense when applied to the representation

• The RI is guaranteed to hold by an
implementation only at method entry and exit
– why not always?

B. AF and RI relationship

• Again from

• Puts together
what we
discussed

• The “all
values of
rep type” includes
all representations that
satisfy and do not satisfy the RI

http://www.cs.cornell.edu/courses/cs3110/2009fa/lectures/lec08.html

B. Representation exposure

• Representation exposure occurs when a client
of an ADT can learn unintended properties
about an implementation – this can easily
preclude or complicate making later changes
to the implementation

• Aliasing, mutability, etc. are common bases for
representation exposure – they can be used
carefully and properly, but often aren’t

B. Questions

• There will be a set of (most likely) linked
questions about a specific ADT and reasonable
AF and RI for it

• There may be a linked rep exposure question,
but if not there will be a standalone one –
most likely, “Does the following have any
representation exposure? If so, what?”

C. Miscellaneous

• Mutability, testing, equality, subclassing, …

• Example topics/questions (all of which would be
more focused) – can’t fit all these in, though!

– Describe a situation where mutability is a good choice
even with the risk of rep exposure

– In what way can we consider testing as a way of
verifying whether an implementation satisfies a
specification?

– What are the strengths of black- vs. white-box testing?

C. continued

• Example topics/questions (all of which would
be more focused)

– Some semi-tricky question about equality and the
equivalence relationship

– Subtyping vs. subclassing – sharing behavior vs.
sharing code

