
System integration

and software process

CSE 331

University of Washington

Michael Ernst

Outline

• Architecture

• Tools: Build tools and version control

• Tools: Bug tracking

• Scheduling

• Implementation and testing order

Outline

• Architecture

• Tools: Build tools and version control

• Tools: Bug tracking

• Scheduling

• Implementation and testing order

Architecture

• An architecture describes a partitioning of the
system

– It indicates dependences on, and data flow
between, modules

• A good architecture ensures that

–Work can proceed in parallel

– Progress can be closely monitored

– The parts combine to provide the desired
functionality

Example architectures

• Pipe-and-filter (think: iterators)

• Layered (think: levels of abstraction)

• Blackboard (think:

callbacks)

Filter Filter Filter SinkSource
pipe pipe pipe pipe

Message

store

Component

Component Component

Component

Component

A good architecture allows:

• Scaling to support large numbers of ___

• Adding and changing features

• Integration of acquired components

• Communication with other software

• Easy customization
– Ideally with no programming

– Turning users into programmers is good

• Software to be embedded within a larger system

• Recovery from wrong decisions
– About technology

– About markets

System architecture

• Have one

• Subject it to serious scrutiny
– At relatively high level of abstraction

– Basically lays down communication protocols

• Strive for simplicity
– Flat is good

– Know when to say no

– A good architecture rules things out

• Reusable components should be a design goal
– Organizational mission is not the same as the project

– Build your organization as well as the project

– Software is capital

– This will not happen by accident

Temptations to avoid

• Avoid featuritis
– Costs under-estimated

• Effects of scale discounted

– Benefits over-estimated
• A Swiss Army knife is rarely the right tool

• Avoid digressions
– Infrastructure

– Premature tuning
• Often addresses the wrong problem

• Avoid quantum leaps
– Occasionally, great leaps forward

– More often, into the abyss

Outline

• Architecture

• Tools: Build tools and version control

• Tools: Bug tracking

• Scheduling

• Implementation and testing order

Build tools

• Building software requires many tools
– Example: Java compiler, C compiler, GUI builder,

Device driver build tool, InstallShield, Web server,
Database, scripting language for build automation,
parser generator, test generator, test harness

• Reproducibility is essential

• System may run on multiple devices
– Each has its own build tools

• Everyone needs to have the same toolset!
– Wrong, missing tool can drastically reduce

productivity

• Hard to switch tools in mid-project

Version control (source code control)

• A version control system supports:

– Collecting work (code, documents) from multiple team members

– Synchronizing all the team members to current source

– Let multiple teams make progress in parallel

– Manage multiple versions, releases of the software

– Help identify regressions

• Example tools:

– Subversion (SVN), Mercurial (Hg)

• Policies are even more important

– When to check in, when to update, when to branch and merge, how
builds are done

– Policies need to change to match the state of the project

• Always diff before you commit

Outline

• Architecture

• Tools: Build tools and version control

• Tools: Bug tracking

• Scheduling

• Implementation and testing order

Bug tracking

• An issue tracking system supports:

– Tracking and fixing bugs

– Identifying problem areas and managing them

– Communicating between team members

– Track regressions and repeated bugs

• Any medium to large size project
requires bug tracking software

• Example tools:

– Bugzilla, Flyspray, Trac, hosted tools (Sourceforge,
Google Code)

Bug tracking

• Need to configure the bug tracking system to match

the project

– Many make the system too complex to be useful

• A good process is key to managing bugs

– Need an explicit policy that everyone knows, follows, and

believes in

Bug
found

Prioritize Assign Replicate Examine

Discover Fix Verify Close

Outline

• Architecture

• Tools: Build tools and version control

• Tools: Bug tracking

• Scheduling

• Implementation and testing order

Scheduling

• “More software projects have gone awry for lack
of calendar time than for all other causes
combined.”

• -- Fred Brooks, The Mythical Man-Month

• Three central questions of the software business
3. When will it be done?
2. How much will it cost?
1. When will it be done?

• Estimates are almost always too optimistic
• Estimates reflect what one wishes to be true
• We confuse effort with progress
• Progress is poorly monitored
• Slippage is not aggressively treated

Scheduling is crucial but underappreciated

• Scheduling is underappreciated
– Made to fit other constraints

• A schedule is needed to make slippage visible
– Must be objectively checkable by outsiders

• Unrealistically optimistic schedules are a disaster
– Decisions get made at the wrong time

– Decisions get made by the wrong people

– Decisions get made for the wrong reasons

• The great scheduling paradox
– Everything takes twice as long as you think

… even if you know that it will take twice as long as you
think

Effort is not the same as progress

• Cost is the product of workers and time

– Easy to track

• Progress is more complicated, and hard to
track

• People don’t like to admit lack of progress

– Think they can catch up before anyone notices

– Not usually possible

• Design the process and architecture to
facilitate tracking

How does a project get to be one year late?

One day at a time

It’s not the hurricanes that get you

It’s the termites
– Tom missed a meeting

– Mary’s keyboard broke

– The compiler wasn’t updated

– …

If you find yourself ahead of schedule
– Don’t relax

– Don’t add features

Controlling the schedule

• First, you must have one

• Avoid non-verifiable milestones
– 90% of coding done

– 90% of debugging done

– Design complete

• 100% events are verifiable milestones
– Module 100% coded

– Unit testing successfully complete

• Need critical path chart (Gantt chart, PERT chart)
– Know effects of slippage

– Know what to work on when

Milestones

• Milestones are critical keep the project on track
– Policies may change at major milestones

– Check-in rules, build process etc.

• Some typical milestones
– Design complete

– Interfaces complete / feature complete

– Code complete / code freeze

– Alpha release

– Beta release

– FCS (First Commercial Shipment) release

Dealing with slippage

• People must be held accountable
– Slippage is not inevitable

– Software should be on time, on budget, and on
function

• Four options
– Add people – startup cost (“mythical man-month”)

– Buy components – hard in mid-stream

– Change deliverables – customer must approve

– Change schedule– customer must approve

• Take no small slips
– One big adjustment is far better than three small ones

Outline

• Architecture

• Tools: Build tools and version control

• Tools: Bug tracking

• Scheduling

• Implementation and testing order

How to code and test your design

• You have a design and architecture

– Need to code and test the system

• Key question, what to do when?

–We'll assume an incremental development model

• Suppose the system has this module

dependency diagram

– In what order should

you address the pieces?

A

B

F

C D

G

E

Bottom-up implementation

• Implement/test children first
– For example: G, E, B, F, C, D, A

• First, test G stand-alone (also E)
– Generate test data as discussed earlier

– Construct drivers

• Next, implement/test B, F, C, D

• No longer unit testing: use lower-level modules
– A test of module M tests:

• whether M works, and

• whether modules M calls behave as expected

– When a failure occurs, many possible sources of defect

– Integration testing is hard, irrespective of order

A

B

F

C D

G

E

Building drivers

• Use a person
– Simplest choice, but also worst choice

– Errors in entering data are inevitable

– Errors in checking results are inevitable

– Tests are not easily reproducible
• Problem for debugging

• Problem for regression testing

– Test sets stay small, don’t grow over time

– Testing cannot be done as a background task

• Better alternative: Automated drivers in a test
harness

Test harnesses

• Goals
– Increase amount of testing over time

– Facilitate regression testing

– Reduce human time spent on testing

• Take input from a file

• Call module being tested

• Save results (if possible)
– Including performance information

• Check results
– At best, is correct

– At worst, same as last time

• Generate reports

Regression testing

• Ensure that things that used to work still do

– Including performance

–Whenever a change is made

• Knowing exactly when a bug is introduced is

important

– Keep old test results

– Keep versions of code that match those results

– Storage is cheap

Top-down testing

• Implement/test parents (clients) first

– Here, we start with A

• To run A, build stubs to simulate B, C, & D

• Next, choose a successor module, e.g., B

– Build a stub for E

– Drive B using A

• Suppose C is next

– Can we reuse the stub for E?

A

B

F

C D

G

E

Implementing a stub

• Query a person at a console
– Same drawbacks as using a person as a driver

• Print a message describing the call
– Name of procedure and arguments
– Fine if calling program does not need result

• This is more common than you might think!

• Provide canned or generated sequence of results
– Very often sufficient
– Generate using criteria used to generate data for unit test
– May need different stubs for different callers

• Provide a primitive (inefficient & incomplete)
implementation
– Best choice, if not too much work
– Look-up table often works

Comparing top-down and bottom-up

• Criteria

– What kinds of errors are caught when?

– How much integration is done at a time?

– Distribution of testing time?

– Amount of work?

– What is working when (during the process)?

• Neither dominates

– Useful to understand advantages/disadvantages of
each

– Helps you to design an appropriate mixed strategy

Catching errors

• Top-down tests global decisions first

– E.g., what system does

–Most devastating place to be wrong

– Good to find early

• Bottom-up uncovers efficiency problems

earlier

– Constraints often propagate downward

– You may discover they can’t be met at lower levels

Amount of integration at each step

• Less is better

• Top-down adds one module at a time

–When error detected either

• Lower-level module doesn’t meet specification

• Higher-level module tested with bad stub

• Bottom-up adds one module at a time

– Connect it to multiple modules

– Thus integrating more modules at each step

–More places to look for error

Distribution of testing time

• Integration is what takes the time

• Bottom-up gets harder as you proceed

– You may have tested 90% of code

• But you still have far more than 10% of the work left

–Makes prediction difficult

• Top-down more evenly distributed

– Better predictions

– Uses more machine time

• In business environments this can be an issue

Amount of work

• Always need test harness

• Top-down
– Build stubs but not drivers

• Bottom-up
– Build drivers but not stubs

• Stubs usually more work than drivers
– Particularly true for data abstractions

• On average, top-down requires more non-
deliverable code
– Not necessarily bad

What components work, when?

• Bottom-up involves lots of invisible activity

– 90% of code written and debugged

– Yet little that can be demonstrated

• Top-down depth-first

– Earlier completion of useful partial versions

One good way to structure an implementation

• Largely top-down
– But always unit test modules

• Bottom-up
– When stubs are too much work

– Low level module that is used in lots of places

– Low-level performance concerns

• Depth-first, visible-first
– Allows interaction with customers, like prototyping

– Lowers risk of having nothing useful

– Improves morale of customers and programmers
• Needn’t explain how much invisible work done

• Better understanding of where the project is

• Don’t have integration hanging over your head

