
Module dependences and

decoupling

CSE 331

University of Washington

Michael Ernst

The limits of scaling

What prevents us from

operating huge, intricate

structures that work

perfectly and indefinitely?

– No friction

– No gravity

– No wear-and-tear

… the difficulty of

understanding them

Interactions cause complexity

To simplify, split design into parts that don't

interact much

Coupling: amount of interaction between parts

Cohesion: similarity within a part

MY

FINAL

PROJECT

MY

FINAL PROJECT

MY

FINECT PROJAL

An application
A poor decomposition

(parts strongly coupled)

A better decomposition

(parts weakly coupled)

Coupling is the path to the dark side

• Coupling leads to complexity

• Complexity leads to confusion

• Confusion leads to suffering

• Once you start down the dark
path, forever will it dominate
your destiny, consume you it will

Design exercise #1

Write a typing break reminder program

Offer the hard-working user occasional reminders of
the perils of Repetitive Strain Injury, and encourage
the user to take a break from typing

Naive design:

– Make a method to display messages and offer
exercises

– Make a loop to call that method from time to time

(Let's ignore multi-threaded solutions for this
discussion)

TimeToStretch suggests exercises

public class TimeToStretch {

public void run() {

System.out.println("Stop typing!");

suggestExercise();

}

public void suggestExercise() {

...

}

}

Timer calls run() periodically

public class Timer {

private TimeToStretch tts = new TimeToStretch();

public void start() {

while (true) {

...

if (enoughTimeHasPassed) {

tts.run();

}

...

}

}

}

Main class puts it together

class Main {

public static void main(String[] args) {

Timer t = new Timer();

t.start();

}

}

This will work...

But we can do better

Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD)
indicates “depends on” or “knows about”

Any name mentioned in the source code

What is wrong with this design?

Does Timer really need to depend on TimeToStretch?

Is Timer re-usable in a new context?

TimeToStretch

Timer

Main

Timer depends on

TimeToStretch

Main class depends on Timer

Decoupling

Timer needs to call the run method

Timer doesn't need to know what the run method does

Weaken the dependency of Timer on TimeToStretch

Introduce a weaker specification, in the form of an
interface or abstract class

public abstract class TimerTask {

public abstract void run();

}

Timer only needs to know that something (e.g.,
TimeToStretch) meets the TimerTask specification

TimeToStretch (version 2)

public class TimeToStretch extends TimerTask {

public void run() {

System.out.println("Stop typing!");

suggestExercise();

}

public void suggestExercise() {

...

}

}

Timer (version 2)

public class Timer {

private TimerTask task;

public Timer(TimerTask task) { this.task = task; }

public void start() {

while (true) {

...

task.run();

}

}

}

Main creates the TimeToStretch object and passes it to Timer:

Timer t = new Timer(new TimeToStretch());

t.start();

Module dependency diagram (version 2)

• Main still depends on Timer (is this necessary?)

• Main depends on the constructor for

TimeToStretch

• Timer depends on TimerTask, not TimeToStretch

– Unaffected by implementation details of TimeToStretch

– Now Timer is much easier to reuse

TimeToStretch

Timer

Main

TimerTask

Subclassing

Dependence

The callback design pattern

• TimeToStretch creates a Timer, and passes
in a reference to itself so the Timer can call
it back

–A callback is a method call from a library
to a client
• e.g., notifies about some condition

Use a callback to invert a dependency

– Inverted dependency: TimeToStretch depends
on Timer (not vice versa)

– Side benefit: Main does not depend on Timer

Callbacks

• Synchronous callbacks:
• Examples: HashMap calls its client’s

hashCode, equals

• Useful when the callback result is
needed immediately by the library

• Asynchronous callbacks:
• Examples: GUI listeners

• Register to indicate interest
and where to call back

• Useful when the callback should be performed later, when
some interesting event occurs

A synchronous callback.

Time increases downward.

Solid lines: calls

Dotted lines: returns

TimeToStretch (version 3)

public class TimeToStretch extends TimerTask {

private Timer timer;

public TimeToStretch() {

timer = new Timer(this);

}

public void start() {

timer.start();

}

public void run() {

System.out.println("Stop typing!");

suggestExercise();

}

...

}

Register interest

with the timer

Callback entry point

Main (version 3)

TimeToStretch tts = new TimeToStretch();

tts.start();

Use a callback to invert a dependency

This MDD inverts the dependency between

Timer and TimeToStretch (compared to ver. 1)

TimeToStretch

Timer

Main

TimerTask

Main does not depend on Timer

TimeToStretch depends on Timer

Decoupling and design

• A good design has dependences (coupling)
only where it makes sense

• While you design (before you code), examine
dependences

• Don’t introduce unnecessary coupling

• Coupling is an easy temptation if you code first
– Suppose a method needs information from

another object

– If you hack in a way to get it:
• The hack might be easy to write

• It will damage the code’s modularity and reusability

• More complex code is harder to understand

Design exercise #2

• A program to display information about

stocks

– stock tickers

– spreadsheets

– graphs

• Naive design:

– Make a class to represent stock information

– That class updates all views of that information

(tickers, graphs, etc.) when it changes

Stocks

StockGraph

StockTicker

Spreadsheet

Main

Module dependency diagram

Main class gathers information and stores in Stocks

Stocks class updates viewers when necessary

Problem: To add/change a viewer, must change Stocks

It is better to insulate Stocks from the vagaries of the

viewers

Weaken the coupling

What should Stocks class know about viewers?

Needs an update method to call when things change

List<Observer> observers;

void notifyObserver() {

for (Observer obs : observers) {

obs.update(newPrice);

}

}

interface Observer {

void update(...);

}

void updateViewers() {

myTicker.update(newPrice);

mySpreadsheet.update(newPrice);

myGraph.update(newPrice);

// Edit this method whenever

// different viewers are desired. �

}

Old: New (uses “observer pattern”):

How are observers created?

Callback

The observer pattern

Stocks are not responsible for viewer creation

Main passes viewers to Stocks as Observers

Stocks keeps list of Observers, notifies them of changes

Problem: doesn't know what info each Observer needs

Stocks

StockGraph

Spreadsheet

Main

Stocks.new()

Stocks.register(Obs)

StockTicker

Observer

new()

A different design: pull versus push

The Observer pattern implements push functionality

A pull model: give viewers access to Stocks, let them

extract the data they need

The best design depends on frequency of operations

(It's also possible to use both patterns simultaneously.)

Stocks

StockGraph

Spreadsheet

Main

Stocks.new

StockTicker

new(Stocks)

Another example of Observer pattern

// Represents a sign-up sheet of students

public class SignupSheet extends Observable {

private List<String> students

= new ArrayList<String>();

public void addStudent(String student) {

students.add(student);

notifyObservers();

}

public int size() {

return students.size();

}

}

Part of the JDK

An Observer

public class SignupObserver implements Observer {

// called whenever the observed object is changed

public void update(Observable o, Object arg) {

System.out.println("Signup count: "

+ ((SignupSheet)o).size());

}

}

Part of the JDK

Not relevant to us

cast because

Observable is

non-generic ☹

Using the observer

SignupSheet s = new SignupSheet();

s.addStudent("billg");

// nothing visible happens

s.addObserver(new SignupObserver());

s.addStudent("torvalds");

// now text appears: "Signup count: 2"

Java's “Listeners” (particularly in GUI classes)
are examples of the Observer pattern

User interfaces: appearance vs. content

It is easy to tangle up appearance and content

Particularly when supporting direct manipulation (e.g.,

dragging line endpoints in a drawing program)

Another example: program state stored in widgets in

dialog boxes

Neither can be understood easily or changed easily

This destroys modularity and reusability

Over time, it leads to bizarre hacks and huge complexity

Code must be discarded

Callbacks, listeners, and other patterns can help

Shared constraints

• Coupling can result from “shared

constraints”, not just code dependencies

– A module that writes a file and a module that

reads the file depend on a common file format

• Even if there is no dependency on each other's code

– If one fails to write the correct format, the

other will fail to read

• Shared constraints are easier to reason

about if they are well encapsulated

– A single module should contain and hide all

information about the format

Facade

Want to perform secure file copies to a server

Given a general purpose library, powerful and

complex

Good idea: build a facade – a new interface to that

library that hides its (mostly irrelevant) complexity

ChannelProxyHTTP

ChannelTCPIPPortWatcher

Packet

Identity
UserAuth

Session

ChannelTCPIP

UserInfo KeyPair HostKeys

Facade

If the library changes, you can update only SecureCopy

ChannelProxyHTTP

ChannelTCPIPPortWatcher

Packet

Identity
UserAuth

Session

ChannelTCPIP

UserInfo KeyPair HostKeys

SecureCopy

MainDatabaseBackup ModManager

