
CSE 331

Software Design & Implementation

Hal Perkins

Spring 2012

==, equals(), and all that

(Slides by David Notkin and Mike Ernst)

1

Programming: object equality

• The basic intuition is simple: two objects are equal if they are
indistinguishable (have the same value)

• But our intuitions are incomplete in subtle ways:

– Must the objects be the same object or “just” indistinguishable?

– What is an object’s value? How do we interpret “the bits”?

– What does it mean for two collections of objects to be equal?

• Does each need to hold the same objects? In the same
order? What if a collection contains itself?

• Who decides? The programming language designer?
You?

– If a program uses inheritance, does equality change?

– Is equality always an efficient operation?

– Is equality temporary or forever?

2

Properties of equality
for any useful notion of equality

• Reflexive a.equals(a)

3  3 would be confusing

• Symmetric a.equals(b)  b.equals(a)

3 = 4  4  3 would be confusing

• Transitive a.equals(b)  b.equals(c)
  a.equals(c)

((1+2) = 3  3 = (5-2)) 
((1+2)  (5-2)) would be confusing

A relation that is reflexive, transitive, and

symmetric is an equivalence relation

3

Reference equality

• The simplest and
strongest (most
restrictive)
definition is
reference equality

• a == b if and only
if a and b refer
(point) to the same
object

• Easy to show that
this definition
ensures == is an
equivalence
relation

Duration d1 = new Duration(5,3);

Duration d2 = new Duration(5,3);

Duration d3 = p2;

// T/F: d1 == d2 ?

// T/F: d1 == d3 ?

// T/F: d2 == d3 ?

// T/F: d1.equals(d2) ?

// T/F: d2.equals(d3) ?

min 5 sec 3

min 5 sec 3

d1

d2

d3 4

Object.equals method

public class Object {

 public boolean equals(Object o) {

 return this == o;

 }

}

• This implements reference equality

• What about the specification of Object.equals?

– It’s a bit more complicated…

5

Equals specification

public boolean equals(Object obj)

 Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation:

• It is reflexive: for any reference value x, x.equals(x) should return true.
• It is symmetric: for any reference values x and y, x.equals(y) should return true if

and only if y.equals(x) returns true.
• It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.

• It is consistent: for any reference values x and y, multiple invocations of

x.equals(y) consistently return true or consistently return false, provided no

information used in equals comparisons on the object is modified.

• For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible

equivalence relation on objects; that is, for any reference values x and y, this method

returns true if and only if x and y refer to the same object (x==y has the value true). …

Parameters:

 obj - the reference object with which to compare.

Returns:

 true if this object is the same as the obj argument; false otherwise.

See Also:

 hashCode(), HashMap

6

The Object contract

• Why so complicated?

• Object class is designed for inheritance

• Its specification will apply to all subtypes

– In other words, all Java classes

• So, its specification must be flexible

– Specification for equals cannot later be weakened

– If a.equals(b) were specified to test a==b, then no
class could change this and still be a true subtype of
Object

– Instead spec for equals enumerates basic properties that
clients can rely on it to have in subtypes of Object

– a==b is compatible with these properties, but so are
other tests

7

Comparing objects less strictly

public class Duration {

 private final int min;

 private final int sec;

 public Duration(int min, int sec) {

 this.min = min;

 this.sec = sec;

 }

}

…

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2));

false – but

we likely

prefer it to
be true

8

An obvious improvement

public boolean equals(Duration d) {

 return d.min == min && d.sec == sec;

}

This defines an equivalence relation for Duration objects

(proof by partial example and handwaving)

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2));

Object o1 = new Duration(10,5);

Object o2 = new Duration(10,5);

System.out.println(o1.equals(o2)); // False!

But oops

9

Overloading

• We have two equals methods:

 equals(Object) in class Object

 equals(Duration) in class Duration

• The one in Duration does not override the inherited one
– it overloads it (different parameter type)

• If d has type Duration, d.equals(Duration) invokes
the method in Duration

• If o has type Object, o.equals(Duration) invokes
the equals(Object) method declared in Object

– Even if the dynamic type of o is Duration!

– Object does not have an equals(Duration)
method. Method types are resolved using static types.

– Dynamic types are used to select appropriate method
at runtime (dynamic dispatch), but selected from
possible methods with the correct static type.

10

@Override equals in Duration

@Override // compiler warning if type mismatch

public boolean equals(Object o) {

 if (! (o instanceof Duration)) // Not equal if parameter

 return false; // is not a Duration

 Duration d = (Duration) o; // cast to treat o as

 // a Duration

 return d.min == min && d.sec == sec;

}

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True

 overriding re-defines an inherited method from a
superclass – same name & parameter list & return type

 Durations now have to be compared as Durations

(or as Objects, but not as a mixture)
11

Equality and inheritance

Let’s add a nanosecond field for fractional seconds

public class NanoDuration extends Duration {

 private final int nano;

 public NanoDuration(int min, int sec, int nano) {

 super(min, sec);

 this.nano = nano;

}

Inherited equals() from Duration ignores nano so

Duration instances with different nanos will be equal

12

equals: account for nano

public boolean equals(Object o) {

 if (! (o instanceof NanoDuration))

 return false;

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

But this is not symmetric!

Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

System.out.println(d1.equals(d2)); // false

System.out.println(d2.equals(d1)); // true

Oops!

13

Let’s get symmetry

public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 // if o is a normal Duration, compare without nano

 if (! (o instanceof NanoDuration))

 return super.equals(o);

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

But this is not transitive!
Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

Duration d3 = new NanoDuration(5,10,30);

System.out.println(d1.equals(d2)); // true

System.out.println(d2.equals(d3)); // true

System.out.println(d1.equals(d3)); // false!

Oops!

14

Replaces earlier version
if (! (o instanceof Duration))

 return false; Fix in Duration

@Overrides

public boolean equals(Object o) {

 if (o == null)

 return false;

 if (! o.getClass().equals(getClass()))

 return false;

 Duration d = (Duration) o;

 return d.min == min && d.sec == sec;

}

 Check exact class instead of instanceOf

 Equivalent change in NanoDuration

15

General issues

• Every subtype must override equals

– even if it wants the identical definition

• Take care when comparing subtypes to one another

– Consider an ArithmeticDuration class that

adds operators but no new fields (on your own)

16

Another solution: avoid inheritance

• Use composition instead
public class NanoDuration {

 private final Duration duration;

 private final int nano;

 // ...

}

• NanoDuration and Duration are unrelated

– There is no presumption that they can be equal

or unequal or even compared to one another…

• Solves some problems, introduces others

– Example: can’t use NanoDurations where

Durations are expected (not a (Java) subtype)

17

Efficiency of equality

Unless you define hashCode() improperly!!!

18

• Equality tests can be slow: Are two objects with millions of sub-

objects equal? Are two video files equal?

• It is often useful to quickly pre-filter – for example

if (video1.length() != video2.length())
 return false
else do full equality check

• Java requires each class to define a standard pre-filter – a
hashCode() method that produces a single hash value (a 32-bit

signed integer) from an instance of the class

• If two objects have different hash codes, they are guaranteed to

be different

• If they have the same hash code, they may be equal objects and

should be checked in full

specification for Object.hashCode

• public int hashCode()

“Returns a hash code value for the object. This method is

supported for the benefit of hashtables such as those
provided by java.util.HashMap.”

• The general contract of hashCode is

– Deterministic: o.hashCode() == o.hashCode()

... so long as o doesn’t change between the calls

– Consistent with equality

• a.equals(b)  a.hashCode()==b.hashCode()

• Change equals()? Must you update hashCode()?

• ALMOST ALWAYS! I MEAN ALWAYS!

19

Aside: hashCode and hash tables

• Classic use of hashing is selecting an index for an

object in a hash table (e.g., map, set)

– O(1) cost if done right

• Java libraries do this too, but in two distinct steps:

– hashCode returns an int value that respects

equality

– Collections scale this value as needed

• See CSE 332 for much more…

20

Duration hashCode implementations

Many possibilities…

public int hashCode() {

 return 1; // always safe, no pre-filtering

}

public int hashCode() {

 return min; // safe, inefficient for Durations

 // differing only in sec field

}

public int hashCode() {

 return min+sec; // safe and efficient

}

public int hashCode() {

 return new Random().newInt(50000); // danger! danger!

}

21

Consistency of equals and hashCode

Suppose we change the spec for Duration.equals:

 // Return true if o and this represent the same number of seconds
 public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 Duration d = (Duration) o;

 return 60*min+sec == 60*d.min+d.sec;

 }

We must update hashCode, or we will get inconsistent behavior. (Why?)
This works:

 public int hashCode() {

 return 60*min+sec;

 }

22

Equality, mutation, and time

• If two objects are equal now, will they always be equal?

– In mathematics, “yes”

– In Java, “you choose” – the Object contract doesn't
specify this

• For immutable objects, equality is inherently forever

– The object’s abstract value never changes (c.f.
“abstract value” in the ADT lectures) – be sure equal
does not depend on possibly changing internal values

• For mutable objects, equality can either

– Compare abstract values field-by-field or

– Be eternal (how can a class with mutable instances
have eternal equality?)

– But not both! (Since abstract value can change.)

23

examples

StringBuffer is mutable, and takes the “eternal” approach

StringBuffer s1 = new StringBuffer("hello");

StringBuffer s2 = new StringBuffer("hello");

System.out.println(s1.equals(s1)); // true
System.out.println(s1.equals(s2)); // false

This is reference (==) equality, which is the only way to guarantee
eternal equality for mutable objects. (Not a problem for immutable data)

By contrast:

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT
Date d2 = new Date(0);

System.out.println(d1.equals(d2)); // true
d2.setTime(1); // a millisecond later
System.out.println(d1.equals(d2)); // false
 24

Behavioral and observational equivalence

Two objects are “behaviorally equivalent” if:

There is no sequence of operations that can distinguish
them

This is “eternal” equality

Two Strings with same content are behaviorally
equivalent, two Dates or StringBuffers with same
content are not

Two objects are “observationally equivalent” if:

There is no sequence of observer operations that can
distinguish them

Excluding mutators

Excluding == (permitting == would require reference
equality)

Two Strings, Dates, or StringBuffers with same content
are observationally equivalent

25

Equality and mutation

Date class implements observational equality

Can therefore violate rep invariant of a Set container by
mutating after insertion

 Set<Date> s = new HashSet<Date>();

 Date d1 = new Date(0);

 Date d2 = new Date(1000);

 s.add(d1);

 s.add(d2);

 d2.setTime(0);

 for (Date d : s) { // prints two identical Dates

 System.out.println(d);

 }

26

Pitfalls of observational equivalence

Equality for set elements would ideally be behavioral

Java makes no such guarantee (or requirement)

So have to make do with caveats in specs:

“Note: Great care must be exercised if mutable

objects are used as set elements. The behavior of a

set is not specified if the value of an object is changed

in a manner that affects equals comparisons while the

object is an element in the set.”

Same problem applies to keys in maps

27

Mutation and hash codes

Sets assume hash codes don't change

Mutation and observational equivalence can break this assumption too:

List<String> friends =

 new LinkedList<String>(Arrays.asList("yoda","zaphod"));

List<String> enemies = ...; // any other list, say wiith “xenu”
Set<List<String>> h = new HashSet<List<String>>();

h.add(friends);

h.add(enemies);

friends.add("weatherwax");

System.out.println(h.contains(friends)); // probably false
for (List<String> lst : h) {

 System.out.println(lst.equals(friends));

} // one “true” will be printed - inconsistent!

28

More container wrinkles: self-containment

equals and hashCode methods on containers are recursive:

class ArrayList<E> {

public int hashCode() {

 int code = 1;

 for (Object o : list)

 code = 31*code + (o==null ? 0 : o.hashCode());

 return code;

}

This causes an infinite loop:

List<Object> lst = new LinkedList<Object>();

lst.add(lst);

int code = lst.hashCode();

29

Summary:

All equals are not equal!

– reference equality

– behavioral equality

– observational equality

30

Summary: Java specifics

• Mixes different types of equality

– Objects different from collections

• Extendable specifications

– Objects, subtypes can be less strict

• Only enforced by the specification

• Speed hack

– hashCode

31

Summary: object-oriented Issues

• Inheritance

– Subtypes inheriting equal can break the spec.

Many subtle issues.

– Forcing all subtypes to implement is cumbersome

• Mutable objects

– Much more difficult to deal with

– Observational equality

– Can break reference equality in eollections

• Abstract classes

– If only the subclass is instantiated, we are ok…

32

Summary: software engineering

• Equality is such a simple concept

• But…

– Programs are used in unintended ways

– Programs are extended in unintended ways

• Many unintended consequences

• In equality, these are addressed using a combination of:

– Flexibility

– Carefully written specifications

– Manual enforcement of the specifications

• perhaps by reasoning and/or testing

33

