
Implementing an ADT:

Representation invariants

and abstraction functions
CSE 331

University of Washington

Michael Ernst

A data abstraction is defined by a

specification

A collection of procedural abstractions
Not a collection of procedures

Together, these procedural abstractions provide
A set of values

All the ways of directly using that set of values
Creating

Manipulating

Observing

Creators and producers: make new values

Mutators: change the value (but don’t affect ==)

Observers: allow one to tell values apart

ADTs and specifications

Specification: only in terms of the abstraction

Never mentions the representation

An ADT is more than just a data structure

data structure + a set of conventions

Why do we need to relate the specification to

the representation?

Connecting specifications and

implementations

Representation invariant: Object → boolean

Indicates whether a data structure is well-formed

Only well-formed representations are meaningful

Defines the set of valid values of the data structure

Abstraction function: Object → abstract value

What the data structure means (as an abstract value)

How the data structure is to be interpreted

How do you compute the inverse, abstract value → Object ?

Implementation of an ADT

is provided by a class

To implement a data abstraction:

– Select the representation of instances, the rep

– Implement operations in terms of that rep

Choose a representation so that

– It is possible to implement operations

– The most frequently used operations are efficient

But which will these be?

Abstraction allows the rep to change later

CharSet Abstraction
// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet

public CharSet ()

// modifies: this

// effects: thispost = thispre U {c}

public void insert (Character c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c ∈ this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

A CharSet implementation.

What client code will expose the error?

class CharSet {
private List<Character> elts

= new ArrayList<Character>();

public void insert(Character c) {
elts.add(c);

}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();

Character a

= new Character(‘a’);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

// print “wrong”;

else

// print “right”;

Where Is the Error?

The answer to this question tells you what

needs to be fixed

Perhaps delete is wrong

It should remove all occurrences

Perhaps insert is wrong

It should not insert a character that is already there

How can we know?

The representation invariant tells us

The representation invariant

• States data structure well-formedness

• Holds before and after every CharSet operation

• Operation implementations (methods) may depend on it

Write it this way:

class CharSet {

// Rep invariant: elts has no nulls and no duplicates

private List<Character> elts;

(

Or, if you are the pedantic sort:
∀∀∀∀ indices i of elts . elts.elementAt(i) ≠ null

∀∀∀∀ indices i, j of elts .

i ≠ j ⇒ ¬ elts.elementAt(i).equals(elts.elementAt(j))

Now, we can locate the error

// Rep invariant:

// elts has no nulls and no duplicates

public void insert(Character c) {

elts.add(c);

}

public void delete(Character c) {

elts.remove(c);

}

Another rep invariant example

class Account {

private int balance;

// history of all transactions

private List<Transaction> transactions;

…

}

// real-world constraints:

balance ≥ 0

balance = Σi transactions.get(i).amount

// implementation-related constraints:

transactions ≠ null

no nulls in transactions

Listing the elements of a CharSet

Consider adding the following method to CharSet:

// returns: a List containing the members of this

public List<Character> getElts();

Consider this implementation:
// Rep invariant: elts has no nulls and no duplicates

public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the

rep invariant?

… sort of

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();

Character a = new Character('a');

s.insert(a);

s.getElts().add(a);

s.delete(a);

if (s.member(a)) …

Representation exposure is external access to the rep

Representation exposure is almost always EVIL

Enables violation of abstraction boundaries and the rep invariant

If you do it, document why and how
And feel guilty about it!

Ways to avoid rep exposure
1. Exploit immutability

Character choose() {

return elts.elementAt(0);

}

Character is immutable.

2. Make a copy

List<Character> getElts() {

return new ArrayList<Character>(elts);

// or: return (ArrayList<Character>) elts.clone();

}

Mutating a copy doesn’t affect the original.

Don’t forget to make a copy on the way in!

3. Make an immutable copy

List<Character> getElts() {

return Collections.unmodifiableList<Character>(elts);

}

Client cannot mutate

Still need to make a copy on the way in

Defining fields as private

is not sufficient

to hide the representation

Checking rep invariants

Should code check that the rep invariant holds?

– Yes, if it’s inexpensive

– Yes, for debugging (even when it’s expensive)

– It’s quite hard to justify turning the checking off

– Some private methods need not check (Why?)

Checking the rep invariant

Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {

checkRep();

elts.remove(c)

// Is this guaranteed to get called?

// See handouts for a less error-prone way to check at exit.

checkRep();

}

…

/** Verify that elts contains no duplicates. */

private void checkRep() {

for (int i = 0; i < elts.size(); i++) {

assert elts.indexOf(elts.elementAt(i)) == i;

}

}

Practice defensive programming

Assume that you will make mistakes

Write and incorporate code designed to catch them
On entry:

Check rep invariant

Check preconditions (requires clause)

On exit:
Check rep invariant

Check postconditions

Checking the rep invariant helps you discover errors

Reasoning about the rep invariant helps you avoid errors
Or prove that they do not exist!

We will discuss such reasoning, later in the term

The rep invariant constrains structure,

not meaning

New implementation of insert that preserves the rep invariant:
public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

elts.addElement(cc);

}

public boolean member(Character c) {

return elts.contains(c);

}

The program is still wrong
Clients observe incorrect behavior

What client code exposes the error?

Where is the error?

We must consider the meaning

The abstraction function helps us

CharSet s = new CharSet();

Character a

= new Character(‘a’));

s.insert(a);

if (s.member(a))

// print “right”;

else

// print “wrong”;

Abstraction function:

rep → abstract value

The abstraction function maps the concrete representation to

the abstract value it represents

AF: Object → abstract value

AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Typically not executable

The abstraction function lets us reason about behavior from the

client perspective

Abstraction function and insert impl.

Our real goal is to satisfy the specification of insert:

// modifies: this

// effects: thispost = thispre U {c}

public void insert (Character c);

The AF tells us what the rep means (and lets us place the blame)

AF(CharSet this) = { c | c is contained in this.elts }

Consider a call to insert:

On entry, the meaning is AF(thispre) ≈ eltspre

On exit, the meaning is AF(thispost) = AF(thispre) U {encrypt(‘a’)}

What if we used this abstraction function?

AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }

Stack example
Stack rep:

int[] elements;

int top; // first unused index

0 0 0

17 0 0

T
o
p
=
1

17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <17>

stack = <17,-9>

17 -9 0

stack = <17>
T
o
p
=
1

Abstract states are the same

stack = <17> = <17>

Concrete states are different

<[17,0,0], top=1>

≠

<[17,-9,0], top=1>

AF is a function

AF-1 is not a function

new Stack()

push(17)

push(-9)

pop()

stack = <>

Benevolent side effects

Different implementation of member:
boolean member(Character c1) {

int i = elts.indexOf(c1);

if (i == -1)

return false;

// move-to-front optimization

Character c2 = elts.elementAt(0);

elts.set(0, c1);

elts.set(i, c2);

return true;

}

Move-to-front speeds up repeated membership tests
Mutates rep, but does not change abstract value

AF maps both reps to the same abstract value

Example: AF() = { a, c, i, n, o, t, u } = AF()

Example: AF() = { b, h, r, s, u } = AF()

r r’

a

op

 ⇒

AF AF

s h r u b b r u s h

a u c t i o n c a u t i o n

Creating the concrete object:

• Establishes the rep invariant

• Establishes the abstraction function

Every operation:

• Maintains the rep invariant

• Maintains the abstraction function

Why is each of these properties important?

The abstraction function:

concrete → abstract

Q: Why do we map concrete to abstract rather

than vice versa?

1. It’s not a function in the other direction.

E.g., lists [a,b] and [b,a] each represent the set {a, b}

2. It’s not as useful in the other direction.

Can construct objects via the provided operators

Writing an abstraction function

The domain: all representations that satisfy the rep
invariant

The range: can be tricky to denote

For mathematical entities like sets: easy

For more complex abstractions: give them fields

AF defines the value of each “specification field”

For “derived specification fields”, see the handouts

The overview section of the specification should
provide a way of writing abstract values

A printed representation is valuable for debugging

ADTs and Java language features

• Java classes
– Make operations in the ADT public

– Make other ops and fields of the class private

– Clients can only access ADT operations

• Java interfaces
– Clients only see the ADT, not the implementation

– Multiple implementations have no code in common

– Cannot include creators (constructors) or fields

• Both classes and interfaces are sometimes appropriate
– Write and rely upon careful specifications

– Prefer interface types instead of specific classes in
declarations (e.g., List instead of ArrayList for
variables and parameters)

26

Summary

Rep invariant
Which concrete values represent abstract values

Abstraction function
For each concrete value, which abstract value it represents

Together, they modularize the implementation
Can examine operators one at a time

Neither one is part of the abstraction (the ADT)

In practice
Always write a representation invariant

Write an abstraction function when you need it
Write an informal one for most non-trivial classes

A formal one is harder to write and often less useful

A half-step backwards

• Why focus so much on invariants (properties of code
that do not – or are not supposed to – change)?

• Why focus so much on immutability (a specific kind of
invariant)?

• Software is complex – invariants/immutability reduce
the intellectual complexity

• If we can assume some property remains unchanged,
we can consider other properties instead

• Reducing what we need to think about can be a huge
benefit

28

