
Rules for reasoning about code

CSE 331

University of Washington

Michael Ernst

Review:

Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

Helps you understand what will happen (simulates the
code)

Introduces facts that may be irrelevant to the goal

Set of current facts may get large

Takes longer to realize that the task is hopeless

Backward reasoning is usually more helpful

Helps you understand what should happen

Given a specific goal, indicates how to achieve it

Given an error, gives a test case that exposes it

Reasoning about code statements

Goal: Convert assertions about programs into logic

Overall plan:

Rule for each type of statement

Rule for combining/eliminating statements

There is a (forward and backward) rule for each
statement in the programming language

Loops have no rule: you have to guess a loop invariant

Hoare triples: A notation

for properties about code

A Hoare triple: { P } code { Q }
P and Q are logical statements (about program values)

code is Java code

“{ P } code { Q }” means “if P is true and you
execute code, then Q is true afterward”
“{ P } code { Q }” is a logical formula like “x + y = z”

Examples:

“1 + 2 = 3” is true “2 + 2 = 5” is false

“{ x>0 } x++ {x>1}” is true “{ x<0 } x++ {x<0}” is false

“{ x>0 } x++ {x>-5}” is true

Is this notation good for forward or for backward
reasoning?

Assignment

// precondition: ??
x = e;

// postcondition: Q

Precondition = Q with all (free) occurrences of x replaced by e
Examples:

// assert: ??
y = x + 1;

// assert y > 0

Precondition = (x+1) > 0

Notation: wp for “weakest precondition”
wp(“x=e;”, Q) = Q with x replaced by e

Weakest = most general
Strongest = most specific

// assert: ??
z = z + 1;

// assert z > 0

Precondition = (z+1) > 0

Backward reasoning:

Method calls

// precondition: ??
x = foo();

// postcondition: Q

If the method has no side effects: just like ordinary assignment

If it has side effects: an assignment to every var in modifies
Use the method specification to determine the new value

// precondition: ??
incrementZ(); // spec: zpost = zpre + 1

// postcondition: z = 22

Precondition: (y = 22 or y = -22)

z+1 = 22

// precondition: ??
x = Math.sqrt(y);

// postcondition: x = 3

// precondition: ??
x = Math.abs(y);

// postcondition: x = 22

Precondition: (y = 9) and (x = anything)

Composition (statement sequences; blocks)

// precondition: ??

S1; // some statement

S2; // another statement

// postcondition: Q

Work from back to front

Precondition = wp(“S1; S2;”, Q) = wp(“S1;”, wp(“S2;”, Q))

Example:

// precondition: ??

x = 0;

y = x+1;

// postcondition: y > 0

If statement example

// precondition: ??

if (x < 5) {

x = x*x;

} else {

x = x+1;

}

// postcondition: x ≥ 9

If statements

// precondition: ??

if (b) S1 else S2

// postcondition: Q

Do case analysis:

wp(“if (b) S1 else S2”, Q)

= (b ⇒ wp(“S1”, Q)

∧ ¬b ⇒ wp(“S2”, Q))

= (b ∧ wp(“S1”, Q)

∨ ¬b ∧ wp(“S2”, Q))

(Why is there no substitution in the condition?)

If statement example redux

// precondition: ??
if (x < 5) {

x = x*x;
} else {

x = x+1;
}

// postcondition: x ≥ 9

Precondition

= wp(“if (x<5) {x = x*x;} else {x = x+1}”, x ≥ 9)
= (x < 5 ∧ wp(“x=x*x”, x ≥ 9)) ∨ (x ≥ 5 ∧ wp(“x=x+1”, x ≥ 9))

= (x < 5 ∧ x*x ≥ 9) ∨ (x ≥ 5 ∧ x+1 ≥ 9)

= (x ≤ -3) ∨ (x ≥ 3 ∧ x < 5) ∨ (x ≥ 8)

-4 -3 -2 -1 0 721 4 653 8 9

