
Reasoning about code

CSE 331

University of Washington

Michael Ernst



Reasoning about code

Determine what facts are true during execution

x > 0

for all nodes n:  n.next.previous == n

array a is sorted

x + y == z

if  x != null, then  x.a > x.b

Applications:

Ensure code is correct (via reasoning or testing)

Find errors

Understand why code is incorrect



Verify a representation invariant

Does this code work properly?

class NameList {

// representation invariant: 0 ≤ index < names.length

int index;

String[] names;

... 

void addName(String name) {

index++;

if (index < names.length) {

names[index] = name;

}

}

}



What must the caller do?

The programmer forgot to document this method.

String[] parseName(String name) {

int commapos = name.indexOf(",");

String firstName = name.substring(0, commapos);

String lastName = name.substring(commapos + 2);

return new String[] { lastName, firstName };

}

• What input produces [“Doe”, “John”]?

• What input produces [“oe”, “John”]?

• Under what circumstances does it work properly?



Web server using SQL database
String userInput = …;

String query = “SELECT * FROM users ”

+ “WHERE name=‘” + userInput + “’;”;

statement.executeUpdate(query);  // execute DB query

Is it possible to retrieve all user information?
query = “SELECT * FROM users

WHERE name=‘a’ or ‘1’=‘1’”

User inputs:    a’ or ‘1’=‘1
query  = “SELECT * FROM users

WHERE name=‘a’ or ‘1’=‘1’”
http://xkcd.com/327/



Types of reasoning

• Forward reasoning:

– verify that code behaves properly

– verify that representation invariants are satisfied

• Backward reasoning:

– verify that code behaves properly

– determine the input that caused an error

– find security flaw



Forward reasoning

You know what is true before running the code
What is true after running the code?

Given a precondition, what is the postcondition?
Example:

// precondition:  x is even
x = x + 3;
y = 2x;
x = 5;
// postcondition:  ??

Application:
Rep invariant holds before running code
Does it still hold after running code?



Backward reasoning

You know what you want to be true after running the code
What must be true beforehand in order to ensure that?

Given a postcondition, what is the corresponding 
precondition?

Example:
// precondition:  ??
x = x + 3;
y = 2x;
x = 5;
// postcondition:  y > x

Application:
(Re-)establish rep invariant at method exit:  what requires?
Reproduce a bug:  what must the input have been?
Exploit a bug



Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

Helps you understand what will happen (simulates the 
code)

Introduces facts that may be irrelevant to the goal

Set of current facts may get large

Takes longer to realize that the task is hopeless

Backward reasoning is usually more helpful

Helps you understand what should happen

Given a specific goal, indicates how to achieve it

Given an error, gives a test case that exposes it



Reasoning:  putting together statements 

assert x >= 0;

// x ≥ 0

z = 0;
// x ≥ 0  &  z = 0

if (x != 0) {
// x > 0  &  z = 0

z = x;

// x > 0  &  z = x

} else {
// x = 0  &  z = 0

z = z + 1;

// x = 0  &  z = 1

}
// x ≥ 0  &  z > 0

assert z > 0;

Using forward reasoning:  Does the postcondition hold?



Forward reasoning with a loop

assert x >= 0;

// x ≥ 0

i = x;
// x ≥ 0  &  i = x

z = 0;
// x ≥ 0  &  i = x  &  z = 0

while (i != 0) {
// ???

z = z + 1;

i = i – 1;

// ???

}
// x ≥ 0  &  i = 0  &  z = x

assert x == z;

Infinite number of paths through this code

How do you know that the overall conclusion is correct?

Induction on the length of the computation


