001 package hw3.test; 002 003 import hw3.*; 004 import org.junit.BeforeClass; 005 import static org.junit.Assert.assertEquals; 006 import static org.junit.Assert.assertFalse; 007 import static org.junit.Assert.assertTrue; 008 009 import org.junit.Before; 010 import org.junit.Test; 011 012 /** 013 * This class contains a set of test cases that can be used to test the 014 * implementation of the RatPoly class. 015 * <p> 016 */ 017 public final class RatPolyTest { 018 private final double JUNIT_DOUBLE_DELTA = 0.00001; 019 020 // get a RatNum for an integer 021 private static RatNum num(int i) { 022 return new RatNum(i); 023 } 024 025 // convenient way to make a RatPoly 026 private RatPoly poly(int coef, int expt) { 027 return new RatPoly(coef, expt); 028 } 029 030 // Convenient way to make a quadratic polynomial, arguments 031 // are just the coefficients, highest degree term to lowest 032 private RatPoly quadPoly(int x2, int x1, int x0) { 033 RatPoly ratPoly = new RatPoly(x2, 2); 034 return ratPoly.add(poly(x1, 1)).add(poly(x0, 0)); 035 } 036 037 // convenience for valueOf 038 private RatPoly valueOf(String s) { 039 return RatPoly.valueOf(s); 040 } 041 042 // convenience for zero RatPoly 043 private RatPoly zero() { 044 return new RatPoly(); 045 } 046 047 // only toString is tested here 048 private void eq(RatPoly p, String target) { 049 String t = p.toString(); 050 assertEquals(target, t); 051 } 052 053 private void eq(RatPoly p, String target, String message) { 054 String t = p.toString(); 055 assertEquals(message, target, t); 056 } 057 058 // parses s into p, and then checks that it is as anticipated 059 // forall i, valueOf(s).coeff(anticipDegree - i) = anticipCoeffForExpts(i) 060 // (anticipDegree - i) means that we expect coeffs to be expressed 061 // corresponding to decreasing expts 062 private void eqP(String s, int anticipDegree, RatNum[] anticipCoeffs) { 063 RatPoly p = valueOf(s); 064 assertEquals(anticipDegree, p.degree()); 065 for (int i = 0; i <= anticipDegree; i++) { 066 assertTrue("wrong coeff; \n" + "anticipated: " + anticipCoeffs[i] 067 + "; received: " + p.getTerm(anticipDegree - i).getCoeff() 068 + "\n" + " received: " + p + " anticipated:" + s, p 069 .getTerm(anticipDegree - i).getCoeff().equals( 070 anticipCoeffs[i])); 071 } 072 } 073 074 // added convenience: express coeffs as ints 075 private void eqP(String s, int anticipDegree, int[] intCoeffs) { 076 RatNum[] coeffs = new RatNum[intCoeffs.length]; 077 for (int i = 0; i < coeffs.length; i++) { 078 coeffs[i] = num(intCoeffs[i]); 079 } 080 eqP(s, anticipDegree, coeffs); 081 } 082 083 // make sure that unparsing a parsed string yields the string itself 084 private void assertToStringWorks(String s) { 085 assertEquals(s, valueOf(s).toString()); 086 } 087 088 RatPoly poly1, neg_poly1, poly2, neg_poly2, poly3, neg_poly3; 089 090 //SetUp Method depends on RatPoly add and Negate 091 //Tests that are intended to verify add or negate should variables declared in this setUp method 092 @Before 093 public void setUp(){ 094 //poly1 = 1*x^1 + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 095 poly1 = RatPoly.valueOf("1*x^1+2*x^2+3*x^3+4*x^4+5*x^5"); 096 097 //neg_poly1 = -1*x^1 + -2*x^2 + -3*x^3 + -4*x^4 + -5*x^5 098 neg_poly1 = poly1.negate(); 099 100 //poly2 = 6*x^2 + 7*x^3 + 8*x^4 101 poly2 = RatPoly.valueOf("6*x^2+7*x^3+8*x^4"); 102 103 //neg_poly2 = -6*x^2 + -7*x^3 + -8*x^4 104 neg_poly2 = poly2.negate(); 105 106 // poly3 = 9*x^3 + 10*x^4 107 poly3 = RatPoly.valueOf("9*x^3+10*x^4"); 108 109 // neg_poly3 = -9*x^3 + -10*x^4 110 neg_poly3 = poly3.negate(); 111 } 112 113 /////////////////////////////////////////////////////////////////////////////////////// 114 //// Constructor 115 /////////////////////////////////////////////////////////////////////////////////////// 116 117 @Test 118 public void testNoArgCtor() { 119 eq(new RatPoly(), "0"); 120 } 121 122 @Test 123 public void testTwoArgCtorWithZeroExp() { 124 eq(poly(0, 0), "0"); 125 eq(poly(0, 1), "0"); 126 eq(poly(1, 0), "1"); 127 eq(poly(-1, 0), "-1"); 128 } 129 130 @Test 131 public void testTwoArgCtorWithOneExp() { 132 eq(poly(1, 1), "x"); 133 eq(poly(-1, 1), "-x"); 134 } 135 136 @Test 137 public void testTwoArgCtorWithLargeExp() { 138 eq(poly(1, 2), "x^2"); 139 eq(poly(2, 2), "2*x^2"); 140 eq(poly(2, 3), "2*x^3"); 141 eq(poly(-2, 3), "-2*x^3"); 142 eq(poly(-1, 3), "-x^3"); 143 } 144 145 /////////////////////////////////////////////////////////////////////////////////////// 146 //// isNaN Test 147 /////////////////////////////////////////////////////////////////////////////////////// 148 149 @Test 150 public void testIsNaN() { 151 assertTrue(RatPoly.valueOf("NaN").isNaN()); 152 } 153 154 @Test 155 public void testIsNotNaN() { 156 assertFalse(RatPoly.valueOf("1").isNaN()); 157 assertFalse(RatPoly.valueOf("1/2").isNaN()); 158 assertFalse(RatPoly.valueOf("x+1").isNaN()); 159 assertFalse(RatPoly.valueOf("x^2+x+1").isNaN()); 160 } 161 162 @Test 163 public void testIsNaNEmptyPolynomial() { 164 RatPoly empty = new RatPoly(); 165 assertTrue(empty.div(empty).isNaN()); 166 } 167 168 /////////////////////////////////////////////////////////////////////////////////////// 169 //// Value Of Test 170 /////////////////////////////////////////////////////////////////////////////////////// 171 172 @Test 173 public void testValueOfSimple() { 174 eqP("0", 0, new int[] { 0 }); 175 eqP("x", 1, new int[] { 1, 0 }); 176 eqP("x^2", 2, new int[] { 1, 0, 0 }); 177 } 178 179 @Test 180 public void testValueOfMultTerms() { 181 eqP("x^3+x^2", 3, new int[] { 1, 1, 0, 0 }); 182 eqP("x^3-x^2", 3, new int[] { 1, -1, 0, 0 }); 183 eqP("x^10+x^2", 10, new int[] { 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }); 184 } 185 186 @Test 187 public void testValueOfLeadingNeg() { 188 eqP("-x^2", 2, new int[] { -1, 0, 0 }); 189 eqP("-x^2+1", 2, new int[] { -1, 0, 1 }); 190 eqP("-x^2+x", 2, new int[] { -1, 1, 0 }); 191 } 192 193 @Test 194 public void testValueOfLeadingConstants() { 195 eqP("10*x", 1, new int[] { 10, 0 }); 196 eqP("10*x^4+x^2", 4, new int[] { 10, 0, 1, 0, 0 }); 197 eqP("10*x^4+100*x^2", 4, new int[] { 10, 0, 100, 0, 0 }); 198 eqP("-10*x^4+100*x^2", 4, new int[] { -10, 0, 100, 0, 0 }); 199 } 200 201 @Test 202 public void testValueOfRationalsSingleTerms() { 203 eqP("1/2", 0, new RatNum[] { num(1).div(num(2)) }); 204 eqP("1/2*x", 1, new RatNum[] { num(1).div(num(2)), num(0) }); 205 eqP("1/1000", 0, new RatNum[] { num(1).div(num(1000)) }); 206 eqP("1/1000*x", 1, new RatNum[] { num(1).div(num(1000)), num(0) }); 207 } 208 209 @Test 210 public void testValueOfRationalsMultipleTerms() { 211 eqP("x+1/3", 1, new RatNum[] { num(1), num(1).div(num(3)) }); 212 eqP("1/2*x+1/3", 1, new RatNum[] { num(1).div(num(2)), 213 num(1).div(num(3)) }); 214 eqP("1/2*x+3/2", 1, new RatNum[] { num(1).div(num(2)), 215 num(3).div(num(2)) }); 216 eqP("1/2*x^3+3/2", 3, new RatNum[] { num(1).div(num(2)), num(0), 217 num(0), num(3).div(num(2)) }); 218 eqP("1/2*x^3+3/2*x^2+1", 3, new RatNum[] { num(1).div(num(2)), 219 num(3).div(num(2)), num(0), num(1) }); 220 } 221 222 @Test 223 public void testValueOfNaN() { 224 assertTrue(valueOf("NaN").isNaN()); 225 } 226 227 /////////////////////////////////////////////////////////////////////////////////////// 228 //// To String Test 229 /////////////////////////////////////////////////////////////////////////////////////// 230 231 @Test 232 public void testToStringSimple() { 233 assertToStringWorks("0"); 234 assertToStringWorks("x"); 235 assertToStringWorks("x^2"); 236 } 237 238 @Test 239 public void testToStringMultTerms() { 240 assertToStringWorks("x^3+x^2"); 241 assertToStringWorks("x^3-x^2"); 242 assertToStringWorks("x^100+x^2"); 243 } 244 245 @Test 246 public void testToStringLeadingNeg() { 247 assertToStringWorks("-x^2"); 248 assertToStringWorks("-x^2+1"); 249 assertToStringWorks("-x^2+x"); 250 } 251 252 @Test 253 public void testToStringLeadingConstants() { 254 assertToStringWorks("10*x"); 255 assertToStringWorks("10*x^100+x^2"); 256 assertToStringWorks("10*x^100+100*x^2"); 257 assertToStringWorks("-10*x^100+100*x^2"); 258 } 259 260 @Test 261 public void testToStringRationalsSingleElems() { 262 assertToStringWorks("1/2"); 263 assertToStringWorks("1/2*x"); 264 } 265 266 @Test 267 public void testToStringRationalsMultiplElems() { 268 assertToStringWorks("x+1/3"); 269 assertToStringWorks("1/2*x+1/3"); 270 assertToStringWorks("1/2*x+3/2"); 271 assertToStringWorks("1/2*x^10+3/2"); 272 assertToStringWorks("1/2*x^10+3/2*x^2+1"); 273 } 274 275 @Test 276 public void testToStringNaN() { 277 assertToStringWorks("NaN"); 278 } 279 280 /////////////////////////////////////////////////////////////////////////////////////// 281 //// Degree Test 282 /////////////////////////////////////////////////////////////////////////////////////// 283 284 @Test // test degree is zero when it should be 285 public void testDegreeZero() { 286 assertEquals("x^0 degree 0", 0, poly(1, 0).degree()); 287 assertEquals("0*x^100 degree 0", 0, poly(0, 100).degree()); 288 assertEquals("0*x^0 degree 0", 0, poly(0, 0).degree()); 289 } 290 291 @Test 292 public void testDegreeNonZero() { 293 assertEquals("x^1 degree 1", 1, poly(1, 1).degree()); 294 assertEquals("x^100 degree 100", 100, poly(1, 100).degree()); 295 } 296 297 @Test // test degree for multi termed polynomial 298 public void testDegreeNonZeroMultiTerm() { 299 assertEquals(poly1.toString() + " has Correct Degree", 5, poly1.degree()); 300 assertEquals(poly2.toString() + " has Correct Degree", 4, poly2.degree()); 301 } 302 303 /////////////////////////////////////////////////////////////////////////////////////// 304 //// Negate Tests 305 /////////////////////////////////////////////////////////////////////////////////////// 306 307 @Test // test degree is zero when it should be 308 public void testNegateZero() { 309 assertEquals(RatPoly.ZERO, RatPoly.ZERO.negate()); 310 } 311 312 @Test // test degree is zero when it should be 313 public void testNegateNaN() { 314 assertEquals(RatPoly.NaN, RatPoly.NaN.negate()); 315 } 316 317 @Test // test degree is zero when it should be 318 public void testNegatePosToNeg() { 319 assertEquals(RatPoly.valueOf("-x-2*x^2-3*x^3-4*x^4-5*x^5"), poly1.negate()); 320 assertEquals(RatPoly.valueOf("-6*x^2-7*x^3-8*x^4"), poly2.negate()); 321 assertEquals(RatPoly.valueOf("-9*x^3-10*x^4"), poly3.negate()); 322 } 323 324 @Test // test degree is zero when it should be 325 public void testNegatNegToPos() { 326 assertEquals(poly1, RatPoly.valueOf("-x-2*x^2-3*x^3-4*x^4-5*x^5").negate()); 327 assertEquals(poly2, RatPoly.valueOf("-6*x^2-7*x^3-8*x^4").negate()); 328 assertEquals(poly3, RatPoly.valueOf("-9*x^3-10*x^4").negate()); 329 } 330 331 /////////////////////////////////////////////////////////////////////////////////////// 332 //// Addition Test 333 /////////////////////////////////////////////////////////////////////////////////////// 334 335 @Test 336 public void testAddSingleTerm() { 337 eq(poly(1, 0).add(poly(1, 0)), "2"); 338 eq(poly(1, 0).add(poly(5, 0)), "6"); 339 eq(poly(1, 0).add(poly(-1, 0)), "0"); 340 eq(poly(1, 1).add(poly(1, 1)), "2*x"); 341 eq(poly(1, 2).add(poly(1, 2)), "2*x^2"); 342 } 343 344 @Test 345 public void testAddMultipleTerm() { 346 RatPoly _XSqPlus2X = poly(1, 2).add(poly(1, 1)).add(poly(1, 1)); 347 RatPoly _2XSqPlusX = poly(1, 2).add(poly(1, 2)).add(poly(1, 1)); 348 349 eq(_XSqPlus2X, "x^2+2*x"); 350 eq(_2XSqPlusX, "2*x^2+x"); 351 352 eq(poly(1, 2).add(poly(1, 1)), "x^2+x"); 353 eq(poly(1, 3).add(poly(1, 1)), "x^3+x"); 354 } 355 356 // Note Polynomial is annotated as p 357 @Test // p1 + p2 = p3 , p1 != 0 && p2 != 0, p1.degree == p2.degree 358 public void testAddSameDegree(){ 359 RatPoly temp = RatPoly.valueOf("3*x^1+4*x^2+5*x^3+6*x^4+7*x^5"); 360 assertEquals(RatPoly.valueOf("4*x^1+6*x^2+8*x^3+10*x^4+12*x^5"), poly1.add(temp)); 361 362 RatPoly temp2 = RatPoly.valueOf("-1*x^2-2*x^3-3*x^4"); 363 assertEquals(RatPoly.valueOf("-7*x^2-9*x^3-11*x^4"), neg_poly2.add(temp2)); 364 } 365 366 @Test // p1 + p2 = p3 , p1 != 0 && p2 != 0, p1.degree != p2.degree 367 public void testAddDifferentDegree(){ 368 assertEquals(RatPoly.valueOf("1*x^1+8*x^2+10*x^3+12*x^4+5*x^5"), poly1.add(poly2)); 369 assertEquals(RatPoly.valueOf("-6*x^2-16*x^3-18*x^4"), neg_poly2.add(neg_poly3)); 370 } 371 372 @Test // p + p = 2p 373 public void testAddWithItSelf() { 374 assertEquals(RatPoly.valueOf("2*x^1+4*x^2+6*x^3+8*x^4+10*x^5"), poly1.add(poly1)); 375 assertEquals(RatPoly.valueOf("-12*x^2-14*x^3-16*x^4"), neg_poly2.add(neg_poly2)); 376 } 377 378 @Test // Addition Associativity (p1 + p2) + p3 = p1 + (p2 + p3) 379 public void testAddAssociativity() { 380 RatPoly operation1 = (poly1.add(poly2)).add(poly3); 381 RatPoly operation2 = (poly3.add(poly2)).add(poly1); 382 assertEquals(operation1, operation2); 383 384 operation1 = (poly1.add(neg_poly2)).add(neg_poly3); 385 operation2 = (neg_poly3.add(neg_poly2)).add(poly1); 386 assertEquals(operation1, operation2); 387 } 388 389 @Test // Addition Commutative Rule p1 + p2 = p2 + p1 390 public void testAddCommutativity() { 391 assertEquals(poly1.add(neg_poly2), neg_poly2.add(poly1)); 392 assertEquals(neg_poly3.add(poly2), poly2.add(neg_poly3)); 393 } 394 395 @Test // Zero Polynomial + Zero Polynomial == Zero Polynomial 396 public void testAddZeroToZero() { 397 assertEquals(RatPoly.ZERO, RatPoly.ZERO.add(RatPoly.ZERO)); 398 } 399 400 @Test // Additive Identity p + Zero Polynomial == p && Zero Polynomial + p == p 401 public void testAddZeroToNonZero() { 402 assertEquals(poly1, RatPoly.ZERO.add(poly1)); 403 assertEquals(poly1, poly1.add(RatPoly.ZERO)); 404 } 405 406 @Test // Additive Inverse p + (-p) = 0 407 public void testAddInverse() { 408 assertEquals(RatPoly.ZERO, poly1.add(neg_poly1)); 409 assertEquals(RatPoly.ZERO, poly2.add(neg_poly2)); 410 assertEquals(RatPoly.ZERO, poly3.add(neg_poly3)); 411 } 412 413 @Test // NaN + NaN == NaN 414 public void testAddNaNtoNaN() { 415 assertEquals(RatPoly.NaN, RatPoly.NaN.add(RatPoly.NaN)); 416 } 417 418 @Test // t + NaN == NaN 419 public void testAddNaNtoNonNaN() { 420 assertEquals(RatPoly.NaN, RatPoly.NaN.add(poly1)); 421 assertEquals(RatPoly.NaN, poly1.add(RatPoly.NaN)); 422 } 423 424 /////////////////////////////////////////////////////////////////////////////////////// 425 //// Subtraction Test 426 /////////////////////////////////////////////////////////////////////////////////////// 427 428 //Also Tests Addition inverse property 429 430 @Test // p1 - p2 = p3 , p1 != 0 && p2 != 0, p1.degree == p2.degree 431 public void testSubtractSameDegree() { 432 RatPoly temp = RatPoly.valueOf("3*x^1+4*x^2+5*x^3+6*x^4+7*x^5"); 433 assertEquals(RatPoly.valueOf("2*x^1+2*x^2+2*x^3+2*x^4+2*x^5"), temp.sub(poly1)); 434 435 RatPoly temp2 = RatPoly.valueOf("-1*x^2-2*x^3-3*x^4"); 436 assertEquals(RatPoly.valueOf("7*x^2+9*x^3+11*x^4"), poly2.sub(temp2)); 437 } 438 439 @Test // p1 - p2 = p3 , p1 != 0 && p2 != 0, p1.degree != p2.degree 440 public void testSubtractDiffDegree() { 441 assertEquals(RatPoly.valueOf("1*x^1-4*x^2-4*x^3-4*x^4+5*x^5"), poly1.sub(poly2)); 442 assertEquals(RatPoly.valueOf("-6*x^2-16*x^3-18*x^4"), neg_poly2.sub(poly3)); 443 } 444 445 @Test // Zero Polynomial - Zero Polynomial == Zero Polynomial 446 public void testSubtractZeroFromZero() { 447 assertEquals(RatPoly.ZERO, RatPoly.ZERO.sub(RatPoly.ZERO)); 448 } 449 450 //Following test method depends on correctness of negate 451 @Test // p - ZeroPolynomial == t && ZeroPolynomial - p == -p 452 public void testSubtractZeroAndNonZero() { 453 assertEquals(neg_poly1, RatPoly.ZERO.sub(poly1)); 454 assertEquals(poly1, poly1.sub(RatPoly.ZERO)); 455 } 456 457 @Test // NaN - NaN == NaN 458 public void testSubtractNaNtoNaN() { 459 assertEquals(RatPoly.NaN, RatPoly.NaN.sub(RatPoly.NaN)); 460 } 461 462 @Test // p - NaN == NaN && NaN - p == NaN 463 public void testSubtractNaNtoNonNaN() { 464 assertEquals(RatPoly.NaN, RatPoly.NaN.sub(poly1)); 465 assertEquals(RatPoly.NaN, poly1.sub(RatPoly.NaN)); 466 } 467 468 /////////////////////////////////////////////////////////////////////////////////////// 469 //// Remove zero when appropriate test 470 /////////////////////////////////////////////////////////////////////////////////////// 471 472 @Test 473 public void testZeroElim() { 474 // make sure zeros are removed from poly 475 eqP("1+0", 0, new int[] { 1 }); 476 // test zero-elimination from intermediate result of sub 477 eq(quadPoly(1, 1, 1).sub(poly(1, 1)), "x^2+1"); 478 // test internal cancellation of terms in mul. (x+1)*(x-1)=x^2-1 479 eq(poly(1, 1).add(poly(1, 0)).mul(poly(1, 1).sub(poly(1, 0))), "x^2-1"); 480 } 481 482 /////////////////////////////////////////////////////////////////////////////////////// 483 //// Small Value Test 484 /////////////////////////////////////////////////////////////////////////////////////// 485 486 @Test 487 public void testSmallCoeff() { 488 // try to flush out errors when small coefficients are in use. 489 eq(quadPoly(1, 1, 1).sub(poly(999, 1).div(poly(1000, 0))), 490 "x^2+1/1000*x+1"); 491 } 492 493 /////////////////////////////////////////////////////////////////////////////////////// 494 //// Multiplication Test 495 /////////////////////////////////////////////////////////////////////////////////////// 496 497 @Test // p1 + p2 = p3 , p1 != 0 && p2 != 0, p1.degree == p2.degree 498 public void testMultiplicationSameDegree() { 499 eq(poly(0, 0).mul(poly(0, 0)), "0"); 500 eq(poly(1, 0).mul(poly(1, 0)), "1"); 501 eq(poly(1, 0).mul(poly(2, 0)), "2"); 502 eq(poly(2, 0).mul(poly(2, 0)), "4"); 503 RatPoly temp = RatPoly.valueOf("3*x^4+2"); 504 assertEquals(RatPoly.valueOf("30*x^8+27*x^7+20*x^4+18*x^3"), temp.mul(poly3)); 505 } 506 507 @Test // p1 + p2 = p3 , p1 != 0 && p2 != 0, p1.degree != p2.degree 508 public void testMultiplicationDiffDegree() { 509 RatPoly temp = RatPoly.valueOf("3*x^2"); 510 assertEquals(RatPoly.valueOf("18*x^4+21*x^5+24*x^6"), temp.mul(poly2)); 511 assertEquals(RatPoly.valueOf("27*x^5+30*x^6"), temp.mul(poly3)); 512 } 513 514 @Test // Multiplication Associativity 515 public void testMultiplicationAssociativity() { 516 assertEquals(poly1.mul(poly2).mul(poly3), 517 poly3.mul(poly2).mul(poly1)); 518 assertEquals(poly1.mul(neg_poly2).mul(neg_poly3), 519 neg_poly3.mul(neg_poly2).mul(poly1)); 520 } 521 522 @Test // Multiplication Commutative 523 public void testMultiplicationCommutativity() { 524 assertEquals(poly1.mul(poly2), poly2.mul(poly1)); 525 assertEquals(neg_poly3.mul(poly2), poly2.mul(neg_poly3)); 526 } 527 528 @Test // ZeroPolynomial * ZeroPolynomial == ZeroPolynomial 529 public void testMultiplicationZeroToZero() { 530 assertEquals(RatPoly.ZERO, RatPoly.ZERO.mul(RatPoly.ZERO)); 531 } 532 533 @Test // p * ZeroPolynomial == ZeroPolynomial && ZeroPolynomial * p == ZeroPolynomial 534 public void testMultiplicationZeroToNonZero() { 535 assertEquals(RatPoly.ZERO, RatPoly.ZERO.mul(poly2)); 536 assertEquals(RatPoly.ZERO, poly2.mul(RatPoly.ZERO)); 537 } 538 539 @Test // NaN * NaN == NaN 540 public void testMultiplicationNaNtoNaN() { 541 assertEquals(RatPoly.NaN, RatPoly.NaN.mul(RatPoly.NaN)); 542 } 543 544 @Test // p * NaN == NaN 545 public void testMultiplicationNaNtoNonNaN() { 546 assertEquals(RatPoly.NaN, RatPoly.NaN.mul(poly1)); 547 assertEquals(RatPoly.NaN, poly1.mul(RatPoly.NaN)); 548 } 549 550 @Test // p * 1 == p 551 public void testMultiplicationIdentity() { 552 assertEquals(poly2, poly2.mul(RatPoly.valueOf("1"))); 553 assertEquals(neg_poly3, neg_poly3.mul(RatPoly.valueOf("1"))); 554 } 555 556 @Test 557 public void testMulMultiplElem() { 558 eq(poly(1, 1).sub(poly(1, 0)).mul(poly(1, 1).add(poly(1, 0))), "x^2-1"); 559 } 560 561 /////////////////////////////////////////////////////////////////////////////////////// 562 //// Division Test 563 /////////////////////////////////////////////////////////////////////////////////////// 564 565 @Test 566 public void testDivEvaltoSingleCoeff() { 567 // 0/x = 0 568 eq(poly(0, 1).div(poly(1, 1)), "0"); 569 570 // 2/1 = 2 571 eq(poly(2, 0).div(poly(1, 0)), "2"); 572 573 // x/x = 1 574 eq(poly(1, 1).div(poly(1, 1)), "1"); 575 576 // -x/x = -1 577 eq(poly(-1, 1).div(poly(1, 1)), "-1"); 578 579 // x/-x = -1 580 eq(poly(1, 1).div(poly(-1, 1)), "-1"); 581 582 // -x/-x = 1 583 eq(poly(-1, 1).div(poly(-1, 1)), "1"); 584 585 // x^100/x^1000 = 0 586 eq(poly(1, 100).div(poly(1, 1000)), "0"); 587 } 588 589 @Test 590 public void testDivtoSingleTerm() { 591 592 // 5x/5 = x 593 eq(poly(5, 1).div(poly(5, 0)), "x"); 594 595 // -x^2/x = -x 596 eq(poly(-1, 2).div(poly(1, 1)), "-x"); 597 598 // x^100/x = x^99 599 eq(poly(1, 100).div(poly(1, 1)), "x^99"); 600 601 // x^99/x^98 = x 602 eq(poly(1, 99).div(poly(1, 98)), "x"); 603 604 // x^10 / x = x^9 (r: 0) 605 eq(poly(1, 10).div(poly(1, 1)), "x^9"); 606 } 607 608 @Test 609 public void testDivtoMultipleTerms() { 610 // x^10 / x^3+x^2 = x^7-x^6+x^5-x^4+x^3-x^2+x-1 (r: -x^2) 611 eq(poly(1, 10).div(poly(1, 3).add(poly(1, 2))), 612 "x^7-x^6+x^5-x^4+x^3-x^2+x-1"); 613 614 // x^10 / x^3+x^2+x = x^7-x^6+x^4-x^3+x-1 (r: -x) 615 eq(poly(1, 10).div(poly(1, 3).add(poly(1, 2).add(poly(1, 1)))), 616 "x^7-x^6+x^4-x^3+x-1"); 617 618 // 5x^2+5x/5 = x^2+x 619 eq(poly(5, 2).add(poly(5, 1)).div(poly(5, 0)), "x^2+x"); 620 621 // x^10+x^5 / x = x^9+x^4 (r: 0) 622 eq(poly(1, 10).add(poly(1, 5)).div(poly(1, 1)), "x^9+x^4"); 623 624 // x^10+x^5 / x^3 = x^7+x^2 (r: 0) 625 eq(poly(1, 10).add(poly(1, 5)).div(poly(1, 3)), "x^7+x^2"); 626 627 // x^10+x^5 / x^3+x+3 = x^7-x^5-3*x^4+x^3+7*x^2+8*x-10 628 // (with remainder: 29*x^2+14*x-30) 629 eq(poly(1, 10).add(poly(1, 5)).div( 630 poly(1, 3).add(poly(1, 1)).add(poly(3, 0))), 631 "x^7-x^5-3*x^4+x^3+7*x^2+8*x-10"); 632 } 633 634 @Test 635 public void testDivComplexI() { 636 // (x+1)*(x+1) = x^2+2*x+1 637 eq(poly(1, 2).add(poly(2, 1)).add(poly(1, 0)).div( 638 poly(1, 1).add(poly(1, 0))), "x+1"); 639 640 // (x-1)*(x+1) = x^2-1 641 eq(poly(1, 2).add(poly(-1, 0)).div(poly(1, 1).add(poly(1, 0))), "x-1"); 642 } 643 644 @Test 645 public void testDivComplexII() { 646 // x^8+2*x^6+8*x^5+2*x^4+17*x^3+11*x^2+8*x+3 = 647 // (x^3+2*x+1) * (x^5+7*x^2+2*x+3) 648 RatPoly large = poly(1, 8).add(poly(2, 6)).add(poly(8, 5)).add( 649 poly(2, 4)).add(poly(17, 3)).add(poly(11, 2)).add(poly(8, 1)) 650 .add(poly(3, 0)); 651 652 // x^3+2*x+1 653 RatPoly sub1 = poly(1, 3).add(poly(2, 1)).add(poly(1, 0)); 654 // x^5+7*x^2+2*x+3 655 RatPoly sub2 = poly(1, 5).add(poly(7, 2)).add(poly(2, 1)).add( 656 poly(3, 0)); 657 658 // just a last minute typo check... 659 eq(sub1.mul(sub2), large.toString()); 660 eq(sub2.mul(sub1), large.toString()); 661 662 eq(large.div(sub2), "x^3+2*x+1"); 663 eq(large.div(sub1), "x^5+7*x^2+2*x+3"); 664 } 665 666 @Test 667 public void testDivExamplesFromSpec() { 668 // seperated this test case out because it has a dependency on 669 // both "valueOf" and "div" functioning properly 670 671 // example 1 from spec 672 eq(valueOf("x^3-2*x+3").div(valueOf("3*x^2")), "1/3*x"); 673 // example 2 from spec 674 eq(valueOf("x^2+2*x+15").div(valueOf("2*x^3")), "0"); 675 } 676 677 @Test 678 public void testDivExampleFromPset() { 679 eq(valueOf("x^8+x^6+10*x^4+10*x^3+8*x^2+2*x+8").div( 680 valueOf("3*x^6+5*x^4+9*x^2+4*x+8")), "1/3*x^2-2/9"); 681 } 682 683 @Test 684 public void testBigDiv() { 685 // don't "fix" the "infinite loop" in div by simply stopping after 686 // 50 terms! 687 eq( 688 valueOf("x^102").div(valueOf("x+1")), 689 "x^101-x^100+x^99-x^98+x^97-x^96+x^95-x^94+x^93-x^92+x^91-x^90+" 690 + "x^89-x^88+x^87-x^86+x^85-x^84+x^83-x^82+x^81-x^80+x^79-x^78+" 691 + "x^77-x^76+x^75-x^74+x^73-x^72+x^71-x^70+x^69-x^68+x^67-x^66+" 692 + "x^65-x^64+x^63-x^62+x^61-x^60+x^59-x^58+x^57-x^56+x^55-x^54+" 693 + "x^53-x^52+x^51-x^50+x^49-x^48+x^47-x^46+x^45-x^44+x^43-x^42+" 694 + "x^41-x^40+x^39-x^38+x^37-x^36+x^35-x^34+x^33-x^32+x^31-x^30+" 695 + "x^29-x^28+x^27-x^26+x^25-x^24+x^23-x^22+x^21-x^20+x^19-x^18+" 696 + "x^17-x^16+x^15-x^14+x^13-x^12+x^11-x^10+x^9-x^8+x^7-x^6+x^5-" 697 + "x^4+x^3-x^2+x-1"); 698 } 699 700 @Test // p / 0 = NaN 701 public void testDivByZero() { 702 assertEquals(RatPoly.NaN, poly2.div(RatPoly.ZERO)); 703 assertEquals(RatPoly.NaN, neg_poly1.div(RatPoly.ZERO)); 704 assertEquals(RatPoly.NaN, poly1.div(RatPoly.ZERO)); 705 } 706 707 @Test // Zero Polynomial / Zero Polynomial == NaN 708 public void testDivisionZeroFromZero() { 709 assertEquals(RatPoly.NaN, RatPoly.ZERO.div(RatPoly.ZERO)); 710 } 711 712 //Following test method depends on correctness of negate 713 @Test // p / Zero Polynomial == NaN && Zero Polynomial / p == 0 714 public void testDivisionZeroAndNonZero() { 715 assertEquals(RatPoly.ZERO, RatPoly.ZERO.div(poly1)); 716 } 717 718 @Test // NaN / NaN == NaN 719 public void testDivisionNaNtoNaN() { 720 assertEquals(RatPoly.NaN, RatPoly.NaN.div(RatPoly.NaN)); 721 } 722 723 @Test // p / NaN == NaN && NaN / p == NaN 724 public void testDivisionNaNtoNonNaN() { 725 assertEquals(RatPoly.NaN, RatPoly.NaN.div(poly1)); 726 assertEquals(RatPoly.NaN, poly1.div(RatPoly.NaN)); 727 } 728 729 @Test // p / 1 == p 730 public void testDivisionByOne() { 731 assertEquals(poly2, poly2.div(RatPoly.valueOf("1"))); 732 } 733 734 /////////////////////////////////////////////////////////////////////////////////////// 735 //// Immutable Test 736 /////////////////////////////////////////////////////////////////////////////////////// 737 738 @Test 739 public void testImmutabilityOfOperations() { 740 // not the most thorough test possible, but hopefully will 741 // catch the easy cases early on... 742 RatPoly one = poly(1, 0); 743 RatPoly two = poly(2, 0); 744 RatPoly empty = new RatPoly(); 745 746 one.degree(); 747 two.degree(); 748 eq(one, "1", "Degree mutates receiver!"); 749 eq(two, "2", "Degree mutates receiver!"); 750 751 one.getTerm(0); 752 two.getTerm(0); 753 eq(one, "1", "Coeff mutates receiver!"); 754 eq(two, "2", "Coeff mutates receiver!"); 755 756 one.isNaN(); 757 two.isNaN(); 758 eq(one, "1", "isNaN mutates receiver!"); 759 eq(two, "2", "isNaN mutates receiver!"); 760 761 one.eval(0.0); 762 two.eval(0.0); 763 eq(one, "1", "eval mutates receiver!"); 764 eq(two, "2", "eval mutates receiver!"); 765 766 one.negate(); 767 two.negate(); 768 eq(one, "1", "Negate mutates receiver!"); 769 eq(two, "2", "Negate mutates receiver!"); 770 771 one.add(two); 772 eq(one, "1", "Add mutates receiver!"); 773 eq(two, "2", "Add mutates argument!"); 774 775 one.sub(two); 776 eq(one, "1", "Sub mutates receiver!"); 777 eq(two, "2", "Sub mutates argument!"); 778 779 one.mul(two); 780 eq(one, "1", "Mul mutates receiver!"); 781 eq(two, "2", "Mul mutates argument!"); 782 783 one.div(two); 784 eq(one, "1", "Div mutates receiver!"); 785 eq(two, "2", "Div mutates argument!"); 786 787 empty.div(new RatPoly()); 788 assertFalse("Div Mutates reciever", empty.isNaN()); 789 } 790 791 /////////////////////////////////////////////////////////////////////////////////////// 792 //// Eval Test 793 /////////////////////////////////////////////////////////////////////////////////////// 794 795 @Test 796 public void testEvalZero() { 797 RatPoly zero = new RatPoly(); 798 assertEquals(" 0 at 0 ", 0.0, zero.eval(0.0), JUNIT_DOUBLE_DELTA); 799 assertEquals(" 0 at 1 ", 0.0, zero.eval(1.0), JUNIT_DOUBLE_DELTA); 800 assertEquals(" 0 at 2 ", 0.0, zero.eval(2.0), JUNIT_DOUBLE_DELTA); 801 } 802 803 @Test 804 public void testEvalOne() { 805 RatPoly one = new RatPoly(1, 0); 806 807 assertEquals(" 1 at 0 ", 1.0, one.eval(0.0), JUNIT_DOUBLE_DELTA); 808 assertEquals(" 1 at 1 ", 1.0, one.eval(1.0), JUNIT_DOUBLE_DELTA); 809 assertEquals(" 1 at 1 ", 1.0, one.eval(2.0), JUNIT_DOUBLE_DELTA); 810 } 811 812 @Test 813 public void testEvalX() { 814 RatPoly _X = new RatPoly(1, 1); 815 816 assertEquals(" x at 0 ", 0.0, _X.eval(0.0), JUNIT_DOUBLE_DELTA); 817 assertEquals(" x at 1 ", 1.0, _X.eval(1.0), JUNIT_DOUBLE_DELTA); 818 assertEquals(" x at 2 ", 2.0, _X.eval(2.0), JUNIT_DOUBLE_DELTA); 819 } 820 821 @Test 822 public void testEval2X() { 823 RatPoly _2X = new RatPoly(2, 1); 824 825 assertEquals(" 2*x at 0 ", 0.0, _2X.eval(0.0), JUNIT_DOUBLE_DELTA); 826 assertEquals(" 2*x at 1 ", 2.0, _2X.eval(1.0), JUNIT_DOUBLE_DELTA); 827 assertEquals(" 2*x at 2 ", 4.0, _2X.eval(2.0), JUNIT_DOUBLE_DELTA); 828 } 829 830 @Test 831 public void testEvalXsq() { 832 RatPoly _XSq = new RatPoly(1, 2); 833 assertEquals(" x^2 at 0 ", 0.0, _XSq.eval(0.0), JUNIT_DOUBLE_DELTA); 834 assertEquals(" x^2 at 1 ", 1.0, _XSq.eval(1.0), JUNIT_DOUBLE_DELTA); 835 assertEquals(" x^2 at 2 ", 4.0, _XSq.eval(2.0), JUNIT_DOUBLE_DELTA); 836 } 837 838 @Test 839 public void testEvalXSq_minus_2X() { 840 RatPoly _2X = new RatPoly(2, 1); 841 RatPoly _XSq = new RatPoly(1, 2); 842 RatPoly _XSq_minus_2X = _XSq.sub(_2X); 843 844 assertEquals(" x^2-2*x at 0 ", 0.0, _XSq_minus_2X.eval(0.0), JUNIT_DOUBLE_DELTA); 845 assertEquals(" x^2-2*x at 1 ", -1.0, _XSq_minus_2X.eval(1.0), JUNIT_DOUBLE_DELTA); 846 assertEquals(" x^2-2*x at 2 ", 0.0, _XSq_minus_2X.eval(2.0), JUNIT_DOUBLE_DELTA); 847 assertEquals(" x^2-2*x at 3 ", 3.0, _XSq_minus_2X.eval(3.0), JUNIT_DOUBLE_DELTA); 848 } 849 850 /////////////////////////////////////////////////////////////////////////////////////// 851 //// Get Term Test 852 /////////////////////////////////////////////////////////////////////////////////////// 853 854 @Test 855 public void testGetTerm() { 856 // getTerm already gets some grunt testing in eqP; checking an 857 // interesting 858 // input here... 859 RatPoly _XSqPlus2X = poly(1, 2).add(poly(1, 1)).add(poly(1, 1)); 860 RatPoly _2XSqPlusX = poly(1, 2).add(poly(1, 2)).add(poly(1, 1)); 861 862 assertEquals(RatTerm.ZERO, _XSqPlus2X.getTerm(-1)); 863 assertEquals(RatTerm.ZERO, _XSqPlus2X.getTerm(-10)); 864 assertEquals(RatTerm.ZERO, _2XSqPlusX.getTerm(-1)); 865 assertEquals(RatTerm.ZERO, _2XSqPlusX.getTerm(-10)); 866 assertEquals(RatTerm.ZERO, zero().getTerm(-10)); 867 assertEquals(RatTerm.ZERO, zero().getTerm(-1)); 868 } 869 870 871 private void assertIsNaNanswer(RatPoly nanAnswer) { 872 eq(nanAnswer, "NaN"); 873 } 874 875 /////////////////////////////////////////////////////////////////////////////////////// 876 //// Differentiate Test 877 /////////////////////////////////////////////////////////////////////////////////////// 878 879 // (NaN)' = NaN 880 @Test 881 public void testDifferentiateNaN(){ 882 assertEquals(RatPoly.NaN, RatPoly.NaN.differentiate()); 883 } 884 885 // (RatPoly.ZERO)' = RatPoly.ZERO 886 @Test 887 public void testDifferentiateZero(){ 888 assertEquals(RatPoly.ZERO, RatPoly.ZERO.differentiate()); 889 } 890 891 // constant a => (a)' = 0 892 @Test 893 public void testDifferentiateConstantNonZero(){ 894 assertEquals(RatPoly.ZERO, RatPoly.valueOf("1").differentiate()); 895 assertEquals(RatPoly.ZERO, RatPoly.valueOf("999").differentiate()); 896 } 897 898 @Test //f(x) = x => f' = 1 899 public void testDifferentiatetoOne() { 900 eq(RatPoly.valueOf("x").differentiate(), "1"); 901 } 902 903 // Constant Multiple Rule (af)' = af' 904 @Test 905 public void testDifferentiateMultiplicationRule(){ 906 RatPoly a_constant = RatPoly.valueOf("2"); 907 assertEquals(a_constant.mul(poly1.differentiate()), 908 (a_constant.mul(poly1)).differentiate()); 909 assertEquals(a_constant.mul(neg_poly2.differentiate()), 910 (a_constant.mul(neg_poly2)).differentiate()); 911 } 912 913 // Polynomial Power Rule (ax^b) = (a*b)*x^(b-1) 914 @Test 915 public void testDifferentiatePowerRule(){ 916 assertEquals(RatPoly.valueOf("1+4*x+9*x^2+16*x^3+25*x^4"), poly1.differentiate()); 917 assertEquals(RatPoly.valueOf("12*x+21*x^2+32*x^3"), poly2.differentiate()); 918 } 919 920 // Sum rule (f + g)' = f' + g' 921 @Test 922 public void testDifferentiateSumRule(){ 923 assertEquals(((poly2).add(neg_poly3)).differentiate(), 924 (poly2.differentiate()).add(neg_poly3.differentiate())); 925 assertEquals(((poly1).add(poly3)).differentiate(), 926 (poly1.differentiate()).add(poly3.differentiate())); 927 } 928 929 // Subtraction rule (f - g)' = f' - g' 930 @Test 931 public void testDifferentiateSubtractionRule(){ 932 assertEquals(((poly2).sub(neg_poly3)).differentiate(), 933 (poly2.differentiate()).sub(neg_poly3.differentiate())); 934 assertEquals(((poly1).sub(poly3)).differentiate(), 935 (poly1.differentiate()).sub(poly3.differentiate())); 936 } 937 938 // Product Rule h(x) = f(x)*g(x) => h'(x) = f'(x)g(x) + f(x)g'(x) 939 @Test 940 public void testDifferentiateProductRule(){ 941 // Whole Number Coefficient 942 RatPoly init_product = poly1.mul(poly2); 943 RatPoly deriv_pt1 = (poly1.differentiate()).mul(poly2); 944 RatPoly deriv_pt2 = poly1.mul(poly2.differentiate()); 945 946 assertEquals(init_product.differentiate() , deriv_pt1.add(deriv_pt2)); 947 948 // Fractional Number Coefficient 949 init_product = neg_poly2.mul(poly3); 950 deriv_pt1 = (neg_poly2.differentiate()).mul(poly3); 951 deriv_pt2 = neg_poly2.mul(poly3.differentiate()); 952 953 assertEquals(init_product.differentiate() , deriv_pt1.add(deriv_pt2)); 954 } 955 956 @Test 957 public void testDifferentiatetoMultipleTerms() { 958 eq(quadPoly(7, 5, 99).differentiate(), "14*x+5"); 959 eq(quadPoly(3, 2, 1).differentiate(), "6*x+2"); 960 eq(quadPoly(1, 0, 1).differentiate(), "2*x"); 961 } 962 963 /////////////////////////////////////////////////////////////////////////////////////// 964 //// Anti Differentiate Test 965 /////////////////////////////////////////////////////////////////////////////////////// 966 //As stated in specification for any term b is assumed >= 0 and Integration Constant is Zero 967 //Note : AntiDerivative of f(x) = F(x) + c , f = F 968 //Note : c = Integration Constant 969 970 @Test //AntiDifferentiate Basic functionality 971 public void testAntiDifferentiate() { 972 eq(poly(1, 0).antiDifferentiate(new RatNum(1)), "x+1"); 973 eq(poly(2, 1).antiDifferentiate(new RatNum(1)), "x^2+1"); 974 } 975 976 @Test 977 public void testAntiDifferentiateWithQuadPoly() { 978 eq(quadPoly(0, 6, 2).antiDifferentiate(new RatNum(1)), "3*x^2+2*x+1"); 979 eq(quadPoly(4, 6, 2).antiDifferentiate(new RatNum(0)), 980 "4/3*x^3+3*x^2+2*x"); 981 } 982 983 @Test // Constant Rule with zero f(x) = 0 => F = c 984 public void testAntiDifferentiateFromZero() { 985 // Zero 986 assertEquals(RatPoly.ZERO, RatPoly.ZERO.antiDifferentiate(RatNum.ZERO)); 987 // Zero with integration constant 5 988 assertEquals(RatPoly.valueOf("5"), RatPoly.ZERO.antiDifferentiate(RatNum.valueOf("5"))); 989 } 990 991 // Constant Rule f(x) = c => F = c*x 992 @Test 993 public void testAntiDifferentiateConstantRule() { 994 // Zero Integration Constant 995 assertEquals(RatPoly.valueOf("5*x"), RatPoly.valueOf("5").antiDifferentiate(RatNum.ZERO)); 996 997 // Non Zero Integration Constant 998 assertEquals(RatPoly.valueOf("5*x+10"), RatPoly.valueOf("5").antiDifferentiate(RatNum.valueOf("10"))); 999 } 1000 1001 // Constant Multiple Rule f(x) = c*g(x) => F = c*G(x) 1002 @Test 1003 public void testAntiDifferentiateConstantMultipleRule() { 1004 RatPoly a_constant = RatPoly.valueOf("7"); 1005 RatPoly b_constant = RatPoly.valueOf("13"); 1006 RatNum i_constant = RatNum.valueOf("11"); 1007 1008 assertEquals(((a_constant).mul(poly1)).antiDifferentiate(i_constant), 1009 a_constant.mul(poly1.antiDifferentiate(RatNum.ZERO)).add(new RatPoly(new RatTerm(i_constant , 0)))); 1010 1011 assertEquals(((b_constant).mul(poly3)).antiDifferentiate(RatNum.ZERO), 1012 b_constant.mul(poly3.antiDifferentiate(RatNum.ZERO))); 1013 } 1014 1015 // Power Rule f(x) = x^a => F = (x^(a+1))/(a+1) 1016 @Test 1017 public void testAntiDifferentiatePowerRule() { 1018 assertEquals(RatPoly.valueOf("9/4*x^4+2*x^5"), poly3.antiDifferentiate(RatNum.ZERO)); 1019 assertEquals(RatPoly.valueOf("2*x^3+7/4*x^4+8/5*x^5+1"), poly2.antiDifferentiate(RatNum.valueOf("1"))); 1020 } 1021 1022 // Sum Rule if h(x) = f(x) + g(x) => H(x) = F(x) + G(x) 1023 @Test 1024 public void testAntiDifferentiateSumRule() { 1025 assertEquals((poly1.add(poly2)).antiDifferentiate(RatNum.ZERO), 1026 poly1.antiDifferentiate(RatNum.ZERO).add(poly2.antiDifferentiate(RatNum.ZERO))); 1027 1028 assertEquals((neg_poly3.add(neg_poly1)).antiDifferentiate(RatNum.valueOf("3")), 1029 neg_poly3.antiDifferentiate(RatNum.ZERO).add(neg_poly1.antiDifferentiate(RatNum.ZERO)) 1030 .add(new RatPoly(new RatTerm(RatNum.valueOf("3") , 0)))); 1031 } 1032 1033 // Difference Rule if h(x) = f(x) - g(x) => H(x) = F(x) - G(x) 1034 @Test 1035 public void testAntiDifferentiateDifferenceRule() { 1036 assertEquals((poly1.sub(poly2)).antiDifferentiate(RatNum.ZERO), 1037 poly1.antiDifferentiate(RatNum.ZERO).sub(poly2.antiDifferentiate(RatNum.ZERO))); 1038 1039 assertEquals((neg_poly3.sub(neg_poly1)).antiDifferentiate(RatNum.valueOf("3")), 1040 neg_poly3.antiDifferentiate(RatNum.ZERO).sub(neg_poly1.antiDifferentiate(RatNum.ZERO)) 1041 .add(new RatPoly(new RatTerm(RatNum.valueOf("3") , 0)))); 1042 } 1043 1044 1045 1046 @Test 1047 public void testAntiDifferentiateWithNaN() { 1048 assertIsNaNanswer(RatPoly.valueOf("NaN").antiDifferentiate( 1049 new RatNum(1))); 1050 assertIsNaNanswer(poly(1, 0).antiDifferentiate(new RatNum(1, 0))); 1051 } 1052 1053 /////////////////////////////////////////////////////////////////////////////////////// 1054 //// Integrate Test 1055 /////////////////////////////////////////////////////////////////////////////////////// 1056 1057 @Test 1058 public void testIntegrateEqualBounds() { 1059 assertEquals( 0.0 , poly3.integrate(1, 1), JUNIT_DOUBLE_DELTA); 1060 assertEquals( 0.0 , poly1.integrate(0,0), JUNIT_DOUBLE_DELTA); 1061 } 1062 1063 @Test 1064 public void testIntegrateBoundsDiffBy1() { 1065 assertEquals( 17.0 / 4.0 , poly3.integrate(0, 1), JUNIT_DOUBLE_DELTA); 1066 assertEquals( 71.0 / 20.0 , poly1.integrate(0,1), JUNIT_DOUBLE_DELTA); 1067 } 1068 1069 @Test 1070 public void testIntegrateLowBoundGreaterThanHigh() { 1071 assertEquals( -19375.0 / 4.0 , poly3.integrate(0, -5), JUNIT_DOUBLE_DELTA); 1072 assertEquals( -5683.0 / 60.0 , poly1.integrate(2,1), JUNIT_DOUBLE_DELTA); 1073 } 1074 1075 @Test 1076 public void testIntegrateLargeBoundDiff() { 1077 assertEquals( 20225000000.0, poly3.integrate(0, 100), JUNIT_DOUBLE_DELTA); 1078 assertEquals( 841409005000.0 , poly1.integrate(0,100), JUNIT_DOUBLE_DELTA); 1079 } 1080 1081 @Test 1082 public void testIntegrateZero() { 1083 assertEquals("Integrate f(x) = 0 from 0 to 10", 0.0, RatPoly.ZERO.integrate(0, 10), JUNIT_DOUBLE_DELTA); 1084 } 1085 1086 @Test 1087 public void testIntegrateOne() { 1088 assertEquals("Integrate f(x) = 1 from 0 to 10", 10.0, RatPoly.valueOf("1").integrate(0, 10), JUNIT_DOUBLE_DELTA); 1089 } 1090 1091 @Test 1092 public void testIntegrateNaN() { 1093 assertEquals("NaN", RatPoly.valueOf("NaN").integrate(0, 1), Double.NaN, JUNIT_DOUBLE_DELTA); 1094 } 1095 }