
Building Tests and hw5

10-17-2012

Section 4

Slides by Kellen Donohue, with material from Krysta Yousoufian

Agenda

• Assignments

– hw2 will be returned soon

– hw3 being returned

– hw4 due tonight

– hw5 released

• Building a test suite

• HW5 warm-up

Unit Test Best Practices
How to craft well-written JUnit tests

#1: Use descriptive asserts, test names

• When a test fails, JUnit tells you:
– Name of test method
– Message passed into failed assertion
– Expected and actual values of failed assertion
– Stack trace

• The more descriptive this information is, the easier it is
to diagnose failures

• Avoid System.out.println()
– Want any diagnostic info to be captured by JUnit and

associated with that test method

#1: Use descriptive asserts, test names

• Test name: describe what’s being tested

– Good: “testAddDaysWithinMonth,” …

– Not so good: “testAddDays1,” “testAddDays2,” …

– Useless: “test1,” “test2,” …

– Overkill:
“testAddDaysOneDayAndThenFiveDaysThenNegat
iveFourDaysStartingOnJanuaryTwentySeventhAnd
MakeSureItRollsBackToJanuaryAfterRollingToFebr
uary()”

#1: Use descriptive asserts, test names

• Assertions: take advantage of expected & actual
values

• Make sure you have the right order:

 assertEquals(message, expected, actual)

• Use the right assert for the occasion:

assertEquals(expected, actual) instead of
assertTrue(expected.equals(actual)) or
assertTrue(expected==actual)

assertTrue(b) instead of assertEquals(true, b)

#1: Use descriptive asserts, test names

• Assertion message: contribute new information
– No need to repeat expected/actual values or info in test

name

– e.g. details of what happened before the failure

Example:

 @Test
 public void test_addDays_wrapToNextMonth() {
 Date actual = new Date(2050, 2, 15);
 actual.addDays(14);
 Date expected = new Date(2050, 3, 1);
 assertEquals("date after +14 days", expected, actual);
 }

Let’s put it all together!

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Descriptive method name

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Tells JUnit that this method
is a test to run

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Variables names describe
function of each object

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Use assertion to check
expected results

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Message gives details
about the test in case
of failure

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

Expected value first,
actual value second

public class DateTest {

 ...

 // Test addDays when it causes a rollover between months

 @Test

 public void testAddDaysWrapToNextMonth() {

 Date actual = new Date(2050, 2, 15);

 actual.addDays(14);

 Date expected = new Date(2050, 3, 1);

 assertEquals("date after +14 days", expected,

 actual);

 }

Let’s put it all together!

That’s it! Test is
short & sweet

#2: Keep tests small

• Ideally, each test only tests one “thing”
– One “thing” usually means one method under one

input condition

• Where possible, only test one method at a time
– Not always possible – but if you test x() using y(),

try to test y() in isolation in another test

– E.g. if you test add() using contains(),
separately test contains() before any items are
added

#2: Keep tests small

• Only a few (likely one) assert statements per
test

– Test halts after first failed assertion

– Don’t know whether later assertions would have
failed

• Low-granularity tests help you isolate bugs

– Tell you exactly what failed and what didn’t

What NOT to do

• IntArrayTest

• What’s wrong?

section4-src/IntArrayTest.java

What NOT to do

• IntArrayTest

• What’s wrong?

• testIntArray tests way too many things

– Too many methods, array states

• Solution: break down by method being tested
and/or state of array

• IntArrayTestBetter

section4-src/IntArrayTest.java
section4-src/IntArrayTestBetter.java

#3: Choose the right tests

• Given a finite number of tests, want
reasonable confidence in an infinite number
of inputs

• Input = initial state of object + method
arguments + …

#3: Choose the right tests

• For each method, ask: what are the
equivalence classes?

– Items in a collection: none, one, many

• Write a test for each equivalence class

#3: Choose the right tests

• Consider common input categories
– Math.abs(): negative, zero, positive values

• Consider boundary cases

– Inputs on the boundary between equivalence classes
– Person.isMinor(): age < 18, age == 18, age > 18

• Consider edge cases
– -1, 0, 1, empty list, arr.length, arr.length-1

• Consider error cases
– Empty list, null object

Other guidelines

• Test all methods
– Caveat: constructors don’t necessarily need explicit testing

• Keep tests simple – avoid complicated logic
– minimize if/else, loops, switch, etc.
– Don’t want to debug your tests!

• Tests should always have at least one assert
– Unless testing that an exception is thrown
– Simply testing that an exception is not thrown is not

necessary
– assertTrue(true); doesn’t count!

Other guidelines

• Tests should be isolated

– Not dependent on side effects of other tests

– Should be able to run in any order

• Use helper methods to factor out common
operations

– E.g. setting up initial state of an object

Example: Date

– public Date(int year, int month, int day)
– public Date() // today
– public int getDay(), getMonth(), getYear()
– public void addDays(int days) // advances by
days

– public int daysInMonth()
– public String dayOfWeek() // e.g. "Sunday"
– public boolean equals(Object o)
– public boolean isLeapYear()
– public void nextDay() // advances by 1 day
– public String toString()

• Come up with unit tests to check the following:

– That no Date object can ever get into an invalid state.
– That the addDays method works properly.

• It should be efficient enough to add 1,000,000 days in a call.

Example: IntStack

• What tests should we write?

section4-src/IntStack.html

More examples

• How would we test the following Collections
interface methods:

• Collections.binarySearch

• Collections.sort

• …

• (Assume the List we pass in has already
been tested)

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html

JUnit Summary

• Tests need failure atomicity (ability to know exactly what
failed).
– Each test should have a descriptive name.

– Assertions should have clear messages to know what failed.

– Write many small tests, not one big test.

• Test for expected errors / exceptions.

• Choose a descriptive assert method, not always
assertTrue.

• Choose representative test cases from equivalent input
classes.

• Avoid complex logic in test methods if possible.

• Use helpers, @Before to reduce redundancy between tests.

Homework 5

• Design, spec, build, and test your own Graph

ADT

• No starter source code

• Unique testing framework

Graph Explanation

1

4

3

2

A B
C

A

E

F

C

HW 5 Explanation

• Specification

– Design your classes, how they fit together, what

operations look like

– Don’t write a “kitchen sink” or “god” class

HW 5 Testing

• Specification vs. Implementation Tests

– Implementation tests

• JUnit tests

• Black box & White box

– Specification tests

• We want to see if your program actually implements a
Graph properly

• Issue commands like AddNode, AddEdge, ListNode,
ListEdge, checked externally

• Black box by necessity

HW5TestDriver

• Specification Tests

– Commands run on your program

– For each test

• Run the commands in the file ending in .test

• Save output in .actual

• Compared to .expected

• Demo in Eclipse

Cross-checker

Design Brainstorming

• Work by yourself first, then compare with
neighbors

• Two implementation strategies

– As an incidence list, in which each vertex stores its
edges and each edge stores its connected vertices.

– As an adjacency matrix, which explicitly
represents, for every pair ⟨A,B⟩ of edges, whether
there is a link from A to B, and how many.

Design Review

• Share what you came up with, RI, and AF

• Runtime/Space complexity of various
operations

– Which is faster for

• Seeing if two vertices are adjacent?

• Adding a vertex?

• Adding an edge?

– Which takes more memory on sparse/dense
graphs

