
Design Patterns

CSE 331 – Section 9

11/28/12

Slides by Kellen Donohue

with material from Hal Perkins, Mike Ernst

Course Logistics

• hw4, hw6 returned

• hw7 being graded

• hw8 due with 2 late days tonight

• hw9 due Wednesday

• Final Exam 8:30 AM on Dec 10

– Review in section next week & Sunday before

Anonymous Comparators

• Recall anonymous inner classes:
button.addActionListener(new ActionListener(){

 public void actionPerformed(ActionEvent e) {

 model.doSomething()

 }

 }

);

• Recall comparators:
class PointYCoordComparator implements Comparator<Point> {

 public int compare(Point p1, Point p2) {

 return p1.Y - p2.Y;

 }

}

Anonymous Comparators

• Combine them to get anonymous
comparators:

Collections.sort(list, new Comparator<Point>() {

 @Override

 public int compare(Point p1, Point p2) {

 return p1.Y - p2.Y;

 }

});

• The code for sorting is inline, so you don’t
have to look anywhere else

What is a design pattern?

• A standard solution to a common
programming problem

• A technique for making code more flexible

• Shorthand for describing program design

– a description of connections among program
components

Outline

• Creational patterns (constructing objects)

• Structural patterns (controlling heap layout)

• Behavioral patterns (affecting object
semantics)

– covered in lecture tomorrow

Creational patterns

• Constructors in Java are inflexible
– Always return a fresh new object, never re-use one
– Can't return a subtype of the class they belong to

• Sharing
– Singleton
– Interning
– Flyweight

• Factories

– Factory method
– Factory object
– Prototype
– Dependency injection

• Builder

Sharing

• Java constructors always return a new object, never a pre-existing
object

• Singleton: only one object exists at runtime
– Factory method returns the same object every time

• Interning: only one object with a particular (abstract) value exists at
runtime
– Factory method returns an existing object, not a new one

• Flyweight: separate intrinsic and extrinsic state, represent them
separately, and intern the intrinsic state
– Implicit representation uses no space
– Not as common / important – not covered today

Singleton

• For a class only one object of that class can ever exist
• Variety of possible implementations – this one creates instance lazily

class Bank {
 private static Bank INSTANCE;

 // private constructor
 private Bank() { ... }

 // factory method
 public static Bank getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new Bank();
 }
 return INSTANCE;
 }
 ...
}

Bank b = new Bank()

Bank b = Bank.getInstance()

Singleton Example -- HttpRequest

• HTTPRequest class handles authentication, don’t
want to have to redo this for each HTTP request,
so create a singleton that everyone uses.

• http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java (line 65)

private static class HttpRequestHolder {

 public static final HttpRequest INSTANCE = new HttpRequest();

}

/* Singleton - Don't instantiate */

private HttpRequest() { }

public static HttpRequest getInstance() {

 return HttpRequestHolder.INSTANCE;

}

http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java
http://code.google.com/p/lab-specimen-transport-system/source/browse/android/src/edu/washington/cs/labspecimentransport/data/HttpRequest.java

Singleton Example -- Comparator

• Comparators have no state

public class LengthComparator implements Comparator<String> {

 public int compare(String s1, String s2) {

 return s1.length() - s2.length();

 }

 private LengthComparator() {}

 private static LengthComparator comp = null;

 public static LengthComparator getInstance() {

 if (comp == null) {

 comp = new LengthComparator();

 }

 return comp;

 }

}

Singleton Example -- Comparator

• Comparators have no state

public class LengthComparator implements Comparator<String> {

 public int compare(String s1, String s2) {

 return s1.length() - s2.length();

 }

 private LengthComparator() {}

 private static LengthComparator comp = null;

 public static LengthComparator getInstance() {

 if (comp == null) {

 comp = new LengthComparator();

 }

 return comp;

 }

}

Singleton Variant -- Random

• You’ll often want to use a random number generator in many
places, but you only want one instance of java.util.Random

• Use a variation of singleton to hold the Random instance

Example from HW3:

 public String getGreeting() {
 Random randomGenerator = new Random();
 String[] greetings = new String[5];
 …

Singleton Variant -- Random

• You’ll often want to use a random number generator in many
places, but you only want one instance of java.util.Random

• Use a variation of singleton to hold the Random instance

Example from HW3:

 public String getGreeting() {
 Random randomGenerator = new Random();
 String[] greetings = new String[5];
 …

 public class RandomSingleton() {
 private static final Random INSTANCE = new Random();
 private RandomSingleton() {}
 pubic Random getInstance() { return INSTANCE; }
 }

Singleton Variant -- Random

• You’ll often want to use a random number generator in many
places, but you only want one instance of java.util.Random

• Use a variation of singleton to hold the Random instance

Example from w/ Singleton HW3:

 public String getGreeting() {
 Random randomGenerator = RandomSingleton.getInstance();
 String[] greetings = new String[5];
 …

 public class RandomSingleton() {
 private static final Random INSTANCE = new Random();
 private RandomSingleton() {}
 pubic Random getInstance() { return INSTANCE; }
 }

Singleton Variant -- Random

• You’ll often want to use a random number generator in many
places, but you only want one instance of java.util.Random

• Use a variation of singleton to hold the Random instance

Example from w/ Singleton HW3:

 public String getGreeting() {
 Random randomGenerator = RandomSingleton.getInstance();
 String[] greetings = new String[5];
 …

 public class RandomSingleton() {
 private static final Random INSTANCE = new Random();
 private RandomSingleton() {}
 pubic Random getInstance() { return INSTANCE; }
 }

Different than Singleton. Can’t
force use of RandomSingleton
like we could if we wrote
Random ourselves, so don’t
depend on that.

Interning

• Similar to Singleton, except instead of there
just being one object per class, there’s one
object per abstract value of the class

• Saves memory by compacting multiple copies

• Requires the class being interned is immutable
Why?

Interning – Point Example

public class Point {

 private int x, y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() { return x; }

 public int getY() { return y; }

 @Override

 public String toString() {

 return "(" + x + ", " + y + ")";

 }

}

Interning – Point Example

public class Point {
 private static Map<String, Point> instances =
 new HashMap<String, Point>();

 public static Point getInstance(int x, int y) {
 String key = x + ", " + y;
 if (!instances.containsKey(key)) {
 instances.put(key, new Point(x, y));
 }
 return instances.get(key);
 }

 private final int x, y; // immutable

 private Point(int x, int y) {
 …

key has to be a unique
representation of abstract
value.

If our point was represented
with r and theta, we’d need to
constrain them for use in the
key. Else we’d have “5, pi” and
“5, 3pi” as different entries in
our map even though they are
the same abstract value

Interning – Strings

• Java uses interning to implement String

• So when you have
– String a = “neat”
– String b = “neat”
– These two strings refer to the same object

• You can concatenate two string literals to match
another
– String c = “n” + “eat”

Interning – String Caveats

• Not all Strings can be interned
– Ones you get from the user
– Ones built by combining string variables

– When you get a string from StringBuilder

• This is why you have to call equals() with strings

but sometimes == will work

• sdf

String a = "neat";
Scanner console = new Scanner(System.in);
String b = console.next(); // user types "neat"
if (a == b) { ... // false

Interning – String Caveats

• Not all Strings can be interned
– Ones you get from the user
– Ones built by combining string variables

– When you get a string from StringBuilder

• This is why you have to call equals() with strings

but sometimes == will work

• sdf

String a = "neat";
Scanner console = new Scanner(System.in);
String b = "neat" // for debugging
if (a == b) { ... // true

Factories

• Factories solve the problem that Java constructors
Can't return a subtype of the class they belong to

• Two factory patterns

• Factory method (helper creates and returns objects)

• Abstract factory
– Abstract superclass defines what can be customized

– Concrete subclass dose customization, returns appropriate
subclass

Factory Method

DateFormat class encapsulates knowledge about how to format dates and
times as text
– Options: just date? just time? date+time? where in the world?
– Instead of passing all options to constructor, use factories.
– The subtype created doesn't need to be specified.

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();

DateFormat df3 = DateFormat.getDateInstance(DateFormat.FULL,

Locale.FRANCE);

Date today = new Date();

System.out.println(df1.format(today)); // “Jul 4, 1776"

System.out.println(df2.format(today)); // "10:15:00 AM"

System.out.println(df3.format(today)); // “juedi 4 juillet 1776"

Factory Method – Image Example

• Suppose we are making implementing the
Swing method for loading an image onto the
screen

• We need to handle different image formats,
which all have very different logic to decode

• Common output image interface though

Factory Method – Image Example Code

abstract class ImageReader {

 abstract Image displayImage();

 public ImageReader getImageReader(String str) {

 if (str.endsWith("gif")) {

 return new GifReader(str);

 } else if (str.endsWith("jpg")) {

 return new JpgReader(str);

 } else {

 ...

 }

 }

}

class GifReader extends ImageReader { GifReader(str) { this.img = new GifImage(); … }}

class JpgReader extends ImageReader { JpgReader(str) { this.img = new JpgImage(); … }}

Factory Method – Image Example Alternative

• Instead of using a factory here you could
imagine having different helper methods
within ImageReader such as displayJpeg(),
displayGif(), etc.

• The Factory method is advantageous because
these methods could be very large and
complex – makes more sense to have in their
own class

Abstract Factory

• You have a superclass that includes one or
more abstract methods

• The superclass factory can be extended to
provide different sub-factories

• Client gets one of the sub-factories, but
doesn’t care which

Abstract Factory -- GUI Example

interface Button { void paint(); }

class WinButton implements

Button {
 public void paint() {
 System.out.println("I'm

 a WinButton");
 }
}

class OSXButton implements

Button {
 public void paint() {
 System.out.println("I'm

 an OSXButton");
 }
}

interface GUIFactory {
 Button createButton();
}

class WinFactory implements

GUIFactory {
 public Button createButton()

{ return new WinButton(); }
}

class OSXFactory implements

GUIFactory {
 public Button createButton()

{ return new OSXButton(); }
}

From: http://en.wikipedia.org/wiki/Abstract_factory_pattern

Abstract Factory -- GUI Example

public class Application {
 public static void main(String[] args) {
 GUIFactory factory = createOSSpecificFactory();
 Button button = factory.createButton();
 button.paint();
 }

 public static GUIFactory createOsSpecificFactory() {
 int sys = readFromConfigFile("OS_TYPE");
 if (sys == 0) return new WinFactory();
 else return new OSXFactory();
 }
}

From: http://en.wikipedia.org/wiki/Abstract_factory_pattern

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Abstract_factory_pattern

Abstract Factory -- GUI Example Explanation

• GUIFactory is the abstract factory
– It’s subclassed to be either a WinFactory or

OSXFactory

– Client doesn’t care whether a WinFactory or
OSXFactory is returned – they only want to
create a button from the GUI Factory and print
it

Abstract Factory -- ImageFactory

• Now suppose we are loading many images,
e.g. for a web server

• If we have spare memory let’s cache
images, otherwise just load them as normal

• Let’s do this with an abstract factory

Abstract Factory – ImageFactory Code

abstract class ImageFactory {
 public abstract Image loadImage(String fileName);
 public static ImageFactory getImageFactory(String filename) {
 if (/* we can cache */) return new CachingImageFactory();
 else return new StandardImageFactory();
 }
}

class StandardImageFactory extends ImageFactory {
 public Image loadImage(String filename) { ... }
}

class CachingImageFactory extends ImageFactory {
 public Image loadImage(String filename) { ... }
}

class ImageLoader {
 public static Image getImage(String filename) {
 ImageFactory imageFactory =
 ImageFactory.getImageFactory(filename);
 return imageFactory.loadImage();
 }
}

Builder Pattern

• Builder is another variation on object construction

• The class has a inner class Builder and is created using
the Builder instead of the constructor

• The Builder takes optional parameters via setter
methods (setX(), setY(), etc.)

• When the client is done supplying parameters he calls
build() on the Builder, finalizing the builder and
returning an instance of the object desired

Builder Example – Before

// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {
 private final int servingSize; // (mL) required
 private final int servings; // required
 private final int calories; // optional
 private final int fat; // (g) optional
 private final int sodium; // (mg) optional
 private final int carbohydrate; // (g) optional

 public NutritionFacts(int servingSize, int servings) {
 this(servingSize, servings, 0);
 }

 public NutritionFacts(int servingSize, int servings,
 int calories) {
 this(servingSize, servings, calories, 0);
 }

 public NutritionFacts(int servingSize, int servings,
 int calories, int fat) {
 this(servingSize, servings, calories, fat, 0);
 }
 public NutritionFacts(int servingSize, int servings,
 int calories, int fat, int sodium) {
 this(servingSize, servings, calories, fat, sodium, 0);
 }

 public NutritionFacts(int servingSize, int servings,

 int calories, int fat, int sodium) {

 this(servingSize, servings, calories, fat, sodium, 0);

 }

 public NutritionFacts(

 int servingSize, int servings, int calories,

 int fat, int sodium, int carbohydrate) {

 this.servingSize = servingSize;

 this.servings = servings;

 this.calories = calories;

 this.fat = fat;

 this.sodium = sodium;

 this.carbohydrate = carbohydrate;

 }

}

From Joshua Bloch’s Effective Java #2

Builder Example – Before

// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {
 private final int servingSize; // (mL) required
 private final int servings; // required
 private final int calories; // optional
 private final int fat; // (g) optional
 private final int sodium; // (mg) optional
 private final int carbohydrate; // (g) optional

 public NutritionFacts(int servingSize, int servings) {
 this(servingSize, servings, 0);
 }

 public NutritionFacts(int servingSize, int servings,
 int calories) {
 this(servingSize, servings, calories, 0);
 }

 public NutritionFacts(int servingSize, int servings,
 int calories, int fat) {
 this(servingSize, servings, calories, fat, 0);
 }
 public NutritionFacts(int servingSize, int servings,
 int calories, int fat, int sodium) {
 this(servingSize, servings, calories, fat, sodium, 0);
 }

 public NutritionFacts(int servingSize, int servings,

 int calories, int fat, int sodium) {

 this(servingSize, servings, calories, fat, sodium, 0);

 }

 public NutritionFacts(

 int servingSize, int servings, int calories,

 int fat, int sodium, int carbohydrate) {

 this.servingSize = servingSize;

 this.servings = servings;

 this.calories = calories;

 this.fat = fat;

 this.sodium = sodium;

 this.carbohydrate = carbohydrate;

 }

}

NutritionFacts cocaCola = new NutritionFacts(240, 8, 100, 0, 35, 27);

Builder Example – After
public class NutritionFacts {

 private final int servingSize;

 private final int servings;

 private final int calories;

 private final int fat;

 private final int sodium;

 private final int carbohydrate;

 public static class Builder {

 // Required parameters

 private final int servingSize;

 private final int servings;

 // Optional parameters

 // initialized to default values

 private int calories = 0;

 private int fat = 0;

 private int carbohydrate = 0;

 private int sodium = 0;

 public Builder(int servingSize, int servings) {

 this.servingSize = servingSize;

 this.servings = servings;

 }

 public Builder calories(int val)

 { calories = val; return this; }

 public Builder fat(int val)

 { fat = val; return this; }

 public Builder carbohydrate(int val)

 { carbohydrate = val; return this; }

 public Builder sodium(int val)

 { sodium = val; return this; }

 public NutritionFacts build() {

 return new NutritionFacts(this);

 }

} // end builder

 private NutritionFacts(Builder builder) {

 servingSize = builder.servingSize;

 servings = builder.servings;

 calories = builder.calories;

 fat = builder.fat;

 sodium = builder.sodium;

 carbohydrate = builder.carbohydrate;

 }

Builder Example – After
public class NutritionFacts {

 private final int servingSize;

 private final int servings;

 private final int calories;

 private final int fat;

 private final int sodium;

 private final int carbohydrate;

 public static class Builder {

 // Required parameters

 private final int servingSize;

 private final int servings;

 // Optional parameters

 // initialized to default values

 private int calories = 0;

 private int fat = 0;

 private int carbohydrate = 0;

 private int sodium = 0;

 public Builder(int servingSize, int servings) {

 this.servingSize = servingSize;

 this.servings = servings;

 }

 public Builder calories(int val)

 { calories = val; return this; }

 public Builder fat(int val)

 { fat = val; return this; }

 public Builder carbohydrate(int val)

 { carbohydrate = val; return this; }

 public Builder sodium(int val)

 { sodium = val; return this; }

 public NutritionFacts build() {

 return new NutritionFacts(this);

 }

} // end builder

 private NutritionFacts(Builder builder) {

 servingSize = builder.servingSize;

 servings = builder.servings;

 calories = builder.calories;

 fat = builder.fat;

 sodium = builder.sodium;

 carbohydrate = builder.carbohydrate;

 }

NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8).
calories(100).sodium(35).carbohydrate(27).build();

Builder Advantages

• Useful when you have many constructor
parameters

– It’s hard to remember which order they all go in

– Makes it explicit which parameters mean what

• Easily allows “optional” parameters

– If you have n parameters, all of which are optional
you’d need 2^n constructors, but only 1 builder

Builder Example

• Google Protocol Buffers
(https://developers.google.com/protocol-
buffers/docs/javatutorial)

• Google uses Protocol Buffers to pass messages between
different machines, programs, etc.

• You define PB in a .proto file
– For example a Person with a name, age, optional phone number,

etc.
– This creates a Person.class with string name, int age, etc.

• To instantiate the Person PB you use Person.Builder

https://developers.google.com/protocol-buffers/docs/javatutorial
https://developers.google.com/protocol-buffers/docs/javatutorial
https://developers.google.com/protocol-buffers/docs/javatutorial
https://developers.google.com/protocol-buffers/docs/javatutorial

Structural patterns: Wrappers

• A wrapper translates between incompatible interfaces

• Wrappers are a thin veneer over an encapsulated class
– modify the interface

– extend behavior

– restrict access

• The encapsulated class does most of the work

Pattern Functionality Interface

Adapter same different

Decorator different same

Proxy same same

Adapter

• Change an interface without changing
functionality
– rename a method

– convert units

– implement a method in terms of another

• Examples
– angles passed in radians vs. degrees

– bytes vs. strings

– hex vs. decimal numbers

Decorator

• Add functionality without changing the interface

– e.g. add caching or benevolent side effects

• Add to existing methods to do something
additional (while still preserving the previous
specification)

– e.g add Logging

• Not all subclassing is decoration

A decorator can remove functionality

• Remove functionality without changing the
interface

• Example: UnmodifiableList

– What does it do about methods like add and put?

Proxy

• Same interface and functionality as the wrapped class

• Control access to other objects
– communication: manage network details when using a

remote object

– locking: serialize access by multiple clients

– security: permit access only if proper credentials

– creation: object might not yet exist (creation is expensive)
• hide latency when creating object

• avoid work if object is never used

Exercise 1

• Your World of CSEcraft game is slow, because
you frequently have to load bulky character
classes from the harddisk. The character
classes are unique and immutable, and each
consumes a lot of memory. Any two clients
that want to access the same character class
could theoretically share the same object.
What pattern would be useful here?

Exercise 2

• In your code, you often find yourself
constructing Shape3D objects, then setting
several properties of the object, and so on. To
make this less tedious, you write a
ShapeMaker class with static methods that
you pass appropriate arguments to, and it
returns a fully built Shape3D with all
properties set appropriately.

Exercise 3

• Your application uses various kinds of Java input
streams to read data. You decide that you'd
prefer to read all data in lowercase. So you
provide a LowercaseInputStream that accepts
another InputStream as a parameter to its
constructor and wraps the original stream with
one that reads all of its data as lowercase
characters. The lowercase input stream
implements the same interfaces as the original
stream, so it can be used in place of the original.

Exercise 4

• Your project needs to connect to a MySQL
database. The existing Java JDBC API for
connecting to the database demands that you
pass it various objects that implement the
DatabaseConnector interface. Such an object
must implement several complex required
methods, but you only want to use one or two of
them. So you write a SimpleConnector class that
your actual connectors can extend, which
implements default versions of most of the
methods and leaves the rest empty for subclasses
to override with their specific behavior.

