
Model-View-Controller

CSE 331 – Section 8

11/15/2012

Slides by Kellen Donohue

with material from Krysta Yousoufian, Jackson Roberts, Hal Perkins

Agenda

• hw4, hw6 being graded

• hw7 due tonight

• Midterms from Hal

• hw8 due Tuesday after Thanksgiving (11/27)

• Today: MVC, callbacks, hw8 demo

Comparator vs. Comparable

• You’re familiar with Comparable<E>, which
makes sense when there’s a natural ordering
on E – for example strings, ints

• But there’s a lot of times when you’ll have
sorting needs for a type specific to one
instance

– Point – sort by x? y? dist from origin? angle?

Comparator<T>

• Interface requiring one method

– public int compare(T o1, T o2)

• Examples:

class PointMagnitudeComparator
 implements Comparator<Point> {
public int compare(Point p1, Point p2) {
 double p1Mag = Math.sqrt(p1.x*p1.x +
 p1.y*p1.y);
 double p2Mag = Math.sqrt(p2.x*p2.x +
 p2.y*p2.y);
 return (int) (p1Mag – p2Mag);
 }
}

class PointYCoordComparator
 implements Comparator<Point> {
 public int compare(Point p1, Point p2) {
 return p1.Y - p2.Y;
 }
}

Using Comparator<T>

• Comparators can be used anywhere a
Comparable class is taken

• Examples:

 Comparator<Point> cp = new PointMagnitudeComparator();

 Set<Point> sortedSet = new TreeSet<Point>(cp);

 List<Point> pointList = new ArrayList<Point>();
 Collections.sort(pointList, cp);

MVC

• THE classic design pattern

• Used for data-driven user applications

• Such apps juggle several tasks:
– Loading and storing the data – getting it in/out of storage on request

– Constructing the user interface – what the user sees

– Interpreting user actions – deciding whether to modify the UI or data

• These tasks are largely independent of each
other

• Model, View, and Controller each get one task

Model

talks to data source to
retrieve and store data

Which database tables is
the requested data stored

in?

What SQL query will get
me the data

I need?

View

asks model for data
and presents it in a
user-friendly format

Would this text look better
blue or red? In the bottom

corner
or front and center?

Should these items go in a
dropdown list or radio

buttons?

Controller

listens for the user to
change data or state in
the UI, notifying the
model or view
accordingly

The user just clicked the
“hide details” button. I

better tell the view.

The user just changed the
event details. I better let the
model know to update the

data.

MVC: Summary

Model

talks to data source to retrieve
and store data

View

asks model for data and presents it in a
user-friendly format

Controller

listens for the user to change data or
state in the UI, notifying the model or
view accordingly

Communication Flow

Taken from http://msdn.microsoft.com/en-us/library/ff649643.aspx

Model View

Controller

http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx

Benefits of MVC

• Organization of code
– Maintainable, easy to find what you need

• Ease of development
– Build and test components independently

– Different people work on different parts at the same time, designers can work
on the view even if they don’t understand code

• Flexibility
– Swap out views for different presentations of the same data (ex: calendar

daily, weekly, or monthly view)

– Swap out models to change data storage without affecting user

Communication Flow & User Interaction

Model View

Controller

User

User looks at view

User interacts with
controller

Communication Flow & User Interaction

• If the user only interacts with controller, then
how to update view, model?

– Callbacks

• Remember callbacks are different than calls

– Think synchronous and asynchronous

– Not blocking & non-blocking

Callbacks

• Synchronous callbacks:
• Examples: HashMap calls its client’s

hashCode, equals

• Useful when the callback result is
needed immediately by the library

• Asynchronous callbacks:
• Examples: GUI listeners

• Register to indicate interest
and where to call back

• Useful when the callback should be performed later, when
some interesting event occurs

A synchronous callback.
Time increases downward.
Solid lines: calls
Dotted lines: returns

Asynchronous callbacks

• Asynchronous
callbacks:
• Examples: GUI listeners

• Register to indicate
interest
and where to call back

• Useful when the callback
should be performed
later, when some
interesting event occurs

Client Library

Register

Return

Event

Callback

Return, so library can
finish processing event

Asynchronous callbacks

• Calendar asynchronous callback demo
• Form’s calendar registers to receive click events by adding the

ineraction method to calendar’s list of methods to call when
it’s clicked.

 this.calendar1.DateChanged +=
 new Forms.DateRangeEventHandler(
 this.calendar1_DateChanged
);

• When calendar is clicked it alerts everyone who signed up to
be notified of the click.

• The callback is executed
private void monthCalendar1_DateChanged(
 object sender,
 DateRangeEventArgs e) {
 MessageBox.Show("Calendar clicked: " + e.Start);
}

AJAX

Browser Server

User adds comment,
AJAX sends to server,

waits for callback
Browser
shows
page

Server starts
work to save

comment

When save to
database is
complete

Callback to browser

Return HTTP OK

Browser
updates UI

to show
success

Return HTTP OK

Callbacks & MVC

• Controller utilizes callbacks to respond to user
events, update the model

• View uses callbacks to update when the model
changes

• Callbacks are used very commonly outside
MVC as well, especially in distributed systems

MVC in industry

• Image stitcher demo
 http://research.microsoft.com/en-us/um/redmond/groups/ivm/ice/

• Ruby on Rails / Django enforce
programmatically

– models, views, and controllers folders
http://code.google.com/p/lab-specimen-transport-system/

Homework 8

• Applying your generic graph & Dijkstra’s to
campus map data

• Given a list of buildings, and walking paths

• Produce routes from one building to another
on the walking paths

• Command-line interface now, GUI in HW9

Homework 8 Data Format

• List of buildings (abbrev, long name, loc in pixels):
BAG Bagley Hall (East Entrance) 1914.51031709.8816
BAG (NE) Bagley Hall (Northeast Entrance) 1878.37861661.4083
BGR By George 1671.54991258.4333

• List of paths (betweeen two pixels, dist in feet):
1903.7201,1952.4322
 1906.1864,1939.0633: 26.583482327919597
 1897.9472,1960.0194: 20.597253035175832
 1915.7143,1956.5: 26.68364745009741
2337.0143,806.8278
 2346.3446,817.55768: 29.685363221542797
 2321.6193,788.16714: 49.5110360968527
 2316.4876,813.59229: 44.65826043418031

• Remember (0,0) is in the upper left (not lower)

Homework 8 Output

• List of walking directions between two given
points
– Distance in feet

– Directions:

• Demo

MVC in HW8

• Model stores graph, performs Dijkstra’s

• View shows results to users in text format

• Controller takes user commands and uses view to
show results

• View and Controller changed in HW9, but Model
stays the same

MVC Example – Traffic Signal

• Regulate valid traffic movements (i.e
don't run cars into each other)

• Detect cars waiting to enter
intersection

• Detect pedestrians waiting to cross
street.

• Traffic lights to direct car traffic
• Pedestrian signals to direct peds to

cross
• Manual override for particular lights

(i.e. disable traffic signals for a parade)
• External timer which triggers changes

in light at set interval

MVC Example – Traffic Signal

• Model:
– stores current state of traffic flow
– stores whether cars and pedestrians

who are waiting

– "Java" interface:
 getCurrentTrafficDirection()
 carWaiting(direction)
 pedWaiting(direction)
 timeStep() // May skip a light cycle

– Implements Observable

MVC Example – Traffic Signal

• Views:

– CarLight

• Each instance knows what
direction it is associated with.

• Observes TrafficModel

– PedLight

• same as CarLight, but for
pedestrians

MVC Example – Traffic Signal

• Controllers:
– PedButton

• Is aware of what TrafficModel it
controls, and its direction

• When triggered, calls
pedWaiting(direction) on that
TrafficModel

– CarDetector
• is aware of TrafficModel and

direction
• When triggered, calls

carWaiting(direction)

MVC Example – Traffic Signal

• Controllers (cont’d):
– LightSwitch:

• aware of what light it controls

• when triggered, enables or disables
the light

– Timer:
• Somehow regulates time (how is not

important)

• aware of a TrafficModel

• calls timeStep() at a regular interval

MVC Example – Registration

• Registration system with web interface
• Advisors create classes, set space, time,

restrictions
• Professors can see who’s signed up for their

class
• Students can sign up for classes, see

available classes, see what they’ve signed
up for

• Administrators can place holds on student
registration

• Professors can be notified when a student
drops

• Students can be notified when a spot is
available in a class they want

MVC Example – Wrapup

• Did you imagine a push or a pull
model (or both)?

• What would change for
interaction with an API, or
mobile app?

• Now advisors can see what
students are registered for,
change their registration, what
changes?

