hw6, BFS, debugging

CSE 331
Section 5—-10/25/12

Slides by Kellen Donohue

Agenda

hw4 being graded

hw5 may be graded first, for feedback to be
used on hw6t

hw6 due next week

Today
— hw6
— BFS
— Debugging

L -

hashcode() and equals()

* Overriding these important for using classes you
write in collections, e.g.
* Read Javadoc for requirements

— Transitive, symmetric, etc. we’ll discuss later in lecture

— Usually must override hashcode() if you override
equals()

* Eclipse can generate them for you

— Right click in class source file

— Source -> Generate hashCode() and equals()

— Not always perfect — learn more later & in 332 ﬁ

5=

Special values vs. exceptions

Map<String, Integer> map =
new HashMap<String, Integer>();

System.out.println(map.get(“hi”));

Special values vs. exceptions

Map<String, Integer> map =
new HashMap<String, Integer>();

System.out.println(map.get(“hi”));

// prints null

Special values vs. exceptions

Map<String, Integer> map =
new HashMap<String, Integer>();

System.out.println(l + map.get(“hi”));

Special values vs. exceptions

Map<String, Integer> map =
new HashMap<String, Integer>();

System.out.println(1l + map.get(“hi”));

// throws NullPointerException

Special values vs. exceptions

Map<String, String> map =
new HashMap<String, String>();

map.put(“hi”, null);

System.out.println(map.get(“hi”));
System.out.println(map.get(“bye”));

// Prints null twice

Special values vs. exceptions — C

Dictionary<string, int> map =
new Dictionary<string, int>();

Console.WriteLine(map[“hi”]);

Special values vs. exceptions — C

Dictionary<string, int> map =
new Dictionary<string, int>();

Console.WriteLine(map[“hi”]);

// CH# -- Throws exception
// (Java -- prints null)

Special values vs. exceptions — C

Dictionary<string, int> map =
new Dictionary<string, int>();

map[“hi”] = 6;
int hival, byeVal;

bool hiSuccess

map.TryGetValue(“hi”, out hiVal);
bool byeSuccess

map.TryGetValue(“bye”, out byeval);

Special values vs. exceptions — C

Dictionary<string, int> map =
new Dictionary<string, int>();

map[“hi”] = 6;

int hival = 4, byeval, = 5;
map.TryGetValue(“hi”, out hival);
map.TryGetValue(“bye”, out byeVal);

// hiVal gets 6, byeVal gets 0 (!)
// (Java throws exception)

Special values vs. exceptions

* Morals of the story

— There’s more than one right answer to special
values vs. exceptions, and you may find more than
one in practice

— Be sure to read the specs to know what happens

— e.g. What happens with null keys?

Homework 6

e Use Graph ADT from hw5

* Fill with Marvel Data “’MARVfL"
— Nodes = characters CQM/CS)

— Edges = books
* Labeled with title

e Connecting characters if both
characters appeared in that
book

 Turns out to model real life
social graphs

Graph paths

* List of nodes travelled
to get from one node to
another, moving along
edges, respecting
direction

Graph paths

* List of nodes travelled
to get from one node to
another, moving along

edges, respecting
direction

Graph paths

* List of nodes travelled
to get from one node to
another, moving along

edges, respecting
direction

Graph paths

* List of nodes travelled
to get from one node to
another, moving along
edges, respecting

direction E

O
-
O

Graph paths

* List of nodes travelled
to get from one node to
another, moving along
edges, respecting

direction E

e ADECisapathAtoC

O
-
O

Graph paths

* List of nodes travelled
to get from one node to
another, moving along

edges, respecting
direction

e ADECisapathAtoC
e ACisapathAtoC

Graph paths

List of nodes travelled
to get from one node to
another, moving along

edges, respecting
direction

ADEC isa pathAto C
ACisapathAtoC
There’s no path Ato B

Graph paths

 We often want to find
the shortest path

between two nodes

— Google Maps

— Optimal route through a
maze

 ACis the shortest path
AtoC

Breadth-first search

* Informally, put the start node in a queue

— While the queue isn’t empty
* Pick a node N off the queue
* If N is the goal then return

* Else, for each node O you can reach from N
— If O isn’t marked
» Add O to the queue
» Mark O

— Couldn’t find an path after exploring graph

Breadth-first search

e We often want to find
the shortest path
between two nodes

— Google Maps

— Optimal route through a
maze

 ACis the shortest path
AtoC

Breadth-first search

* Queue 0

Breadth-first search

* Queue
—C

Breadth-first search

Breadth-first search

* Queue
—D

Breadth-first search

* Queue 0

Breadth-first search

* Queue
— E

Breadth-first search

* Queue 0

Breadth-first search

* Queue empty, so no
path A->B

Breadth-first search

* Maze demo

Breadth-first search

Guaranteed to find shortest-path
— In number of nodes
— Not lowest cost path if edges have cost

If a stack was used instead of queue = depth first
search

Very memory intensive for large graphs -- O(b”d)

Will use in HW®6 to find shortest paths between two
characters

Eclipse Debugging

e Hal will talk more in lecture tomorrow about
debugging

— In some sense debugging is last resort
— Still want good tools for it

* Eclipse has a great debugger!
— Complicated, hidden features

— I'll demo a lot, but don’t feel try to remember how
to do everything — slides will be posted

Eclipse Debugging

FRSIrE SR @RS RINIF -0~ @ v P E [
FERE T SR "| 5 Quick Access ﬁ’| %}J Java %S‘u‘l\l Repository Exploring ¢ PyDev = g% ;-‘ b
ﬁDebug bt | | g T = 8 ()= Variables 2 g Breakpoints | &7 £ F Y= 8
= DelegatingMethodAccessolmplinvoke(Object, Object(]] lir Mame Value
= Method.invoke(Object, Object...) line: not available & this RatPolyStackTest (id=33)
= FrameworkMethodS1.runReflectiveCall() line: 45
= FrameworkMethodS1{ReflectiveCallablel.run() line: 15
= FrameworkMethod invokeExplosively(Object, Object...) line:
= InvokeMethod.evaluate() line: 20 E
= Block/Unitd ClassRunner(ParentRunner< T=).runLeaf(Statem
= Block/UnitdClassRunner.runChild(FrameworkMethod, Runk'—
= BlocklUnitd ClassRunner.runChild{Object, RunNotifier) line:
= ParentRunner$3.run() line: 231 :
= ParentRunner$l.schedule(Runnable) line: 60 h il E
= Block/UnitdClassRunner{ParentRunner<T>}.runChildren(Ru i
= ParentRunner<T> arcess8000iParentRunner RunMotifiert i 7 =
4| 1n | 3 4 }
[J] RatPolyStackTest,java 52 = O D& Qutline 52 = B8

151 . N R
1 ;; @ testClear() : void -
154 @ testCtor() : void
155= @Test @ testDifferentiate() : v
156 public woid testDupWithOneVal() { @ testDivMultiElems) :
157 Ratzo;yfrtack stkl = stack("3"); © testDivTwoElems() -
158 stkl.du ; — .
159 asser‘tSiir.J:I;Is(stkl, "33"); (o @ testDupW?thMuIt‘-fal =
8 stkl = stack("123"); @ testDupWithOneVal(
161 stkl.dup(); @ testDupWithTwoVal
17 assertStackTs =tkl. "1123"): o tecHintanratal onid =

B

Eclipse Debugging

Double click in the gray area to the left of your code to set a
breakpoint. A breakpoint is a line that the Java VM will stop at
during normal execution of your program, and wait for action from

you.

Eclipse Debugging
@,

Click the Bug icon to run in Debug

mode. Otherwise your program
won’t stop at your breakpoints.

Eclipse Debugging

Iﬁu[%

| = & @ ﬁ"'l

Controlling your program
while debugging is done
with these buttons

Eclipse Debugging

Play, pause, stop work just
like you'd expect

Eclipse Debugging
[» & [«==]

Step Into

Steps into the method at the
current execution point — if
possible. If not possible then
just proceeds to the next
execution point.

If there’s multiple methods
at the current execution
point step into the first one
to be executed.

Eclipse Debugging

|up = |§>_i-n‘=z _ﬁil

Step Over

Steps over any method calls at
the current execution point.

Theoretically program proceeds
just to the next line.

BUT, if you have any breakpoints
set that would be hit in the
method(s) you stepped over,
execution will stop at those
points instead.

Eclipse Debugging

Iup = |§1~.~§>i ﬁ"'l

Step Out

Allows method to finish and
brings you up to the point
where that method was called.

Useful if you accidentally step
into Java internals (more on
how to avoid this next).

Just like with step over though
you may hit a breakpoint in the
remainder of the method, and
then you’ll stop at that point.

[type filter text|

> General
> Ant
> Code Recommenders
> Help
> Install/Update
> Appearance
> Build Path
> Code Style
- Compiler
Detail Formatters
Heap Walking
Logical Structures

Primitive Display Of
Step Filteringl
» Editor
> Installed JREs
JUnit
Properties Files Editor

> Maven
> Mylyn
> PyDev
> Run/Debug
> Team
Validation
> WindowBuilder
> XML
Pl P —

®

Eclipse Debugging

I@ma-

| 3.2 e S|

Step Filtering

1

-

Step filters are applied when the 'Use Step Filters' toggle is activated.

Use Step Filters
Defined step filters:

e

[8 com.ibm.®

[8 com.sun*

O Hjava*

] EEja\.rax.*

= EEjrockit.*

H junit*

[C] £ org.omg.”

[8 sun.*

[8 sunw.*
@java.lang.CIassLoader

Add Filter...
Add Class...
Add Packages...

Remaowve

Select All

Deselect All

[T Filter synthetic methods (requires VM support)
[Filter static initializers

[Filter constructors

[T Filter simple getters

[T Filter simple setters

Step through filters

i

’Restore Defaults] ’ Apply

[

oK] Cancel]

Enable/disable step filters

There’s a lot of code you don’t
want to enter when debugging,
internals of Java, internals of
JUnit, etc.

You can skip these by
configuring step filters.

Checked items are skipped.

Eclipse Debugging

35 Debug &2

|=[® T =8
DelegatingMethodAccessordmplinvoke(Object, Object[]) lir
Method.invoke{Object, Object...) line: not available
FrameworkMethod51.runReflectiveCall() line: 45
FrameworkMethodS1 (ReflectiveCallable).run() line: 15
FrameworkMethod.invokeExplosively(Object, Object...) line:
InvokeMethod.evaluatel]) line: 20 =
BlockUnitd ClassRunner(ParentRunner<T=).runLeaf{Statem
BlocklUnitd ClassRunner.runChild(FrameworkMethod, Runh
BlocklUnitd ClassRunner.runChild(Object, RunMotifier) line:
ParentRunners3.runi) line: 231
ParentRunnersl.schedule(Runnable) line: 60
BlocklUnitd ClassRunner(ParentRunner<T=).runChildren(Ru

ParentRunner<T> . arcessS000(ParentRunner Runhlotifier i~
1 b

Stack Trace

Shows what methods have
been called to get you to
current point where program
is stopped.

You can click on different
method names to navigate
to that spot in the code
without losing your current
spot.

Eclipse Debugging

Variables Window

Shows all variables, including
method parameters, local
variables, and class variables,
that are in scope at the current
execution spot. Updates when
you change positions in the
stackframe. You can expand
objects to see child member
values. There’s a simple value
printed, but clicking on an item
will fill the box below the list
with a pretty format.

()= Variables 2 g Breakpoints =

Mame Value
@ this RatPolyStackTest (id=33)

8

Some values are in the form of
ObjectName (id=x), this can be
used to tell if two variables are
reffering to the same object.

Eclipse Debugging

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

()= Variables 2 ©g Breakpoints &9 Expressions

Mame
. @ this
4 Ot
. coeff
B expt

-2%%"5

Walue

RatTermTest (§
RatTerm (id=4
RatMum (id=4
5

Eclipse Debugging

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

()= Variables 2 ©g Breakpoints &9 Expressions

Mame
. @ this
4 Ot
. coeff
B expt

-2%%"5

Walue

RatTermTest (§
RatTerm (id=4
RatMum (id=4
5

Eclipse Debugging

There’s a powerful right-click '
()= Variables 32 ©g Breakpoints &9° Expressions

menu.
Mame Value
. . @ this RatTermTest (id=33)
° —
Seg all references to a given 40 tg — el o
Varlable & expt = Copy Variables Ctrl+C
Find... Ctrl+F
. @, Change Value..
* See all instances of the A
variable’s class 3 | AlReterenes
) All Instances... Ctrl+5Shift+M
Instance Count...
-2*x 5
e Add watch statements for g New Detail Formatter..
that variables value (more , Open Declared Type
Open Declared Type Hierarchy
later)
Instance Breakpoints...
5_5"" Watch
-, Inspect Ctrl+Shift+1

SR ST

Eclipse Debugging

Show Logical Structure

Expands out list items so it’s as
if each list item were a field (and
continues down for any children

list items)

Mame
@ this
a4 O stkl
a o polys
4 a [0]
4 © terms
a & [0]
b B coeff
o expt

9= Variables i7 9g Breakpoints &9 Expressions

BBp ~ =

Value

RatPolyStackTest (id=33)
RatPolyStack (id=44)
Stack<E= (id=49)
RatPoly (id=719)
Arraylist<E> (id=728)
RatTerm (id=731)
RatMum (id=733)

i

1 | i

Eclipse Debugging

Breakpoints Window

Shows all existing breakpoints in
the code, along with their
conditions and a variety of
options.

Double clicking a breakpoint will
take you to its spot in the code.

()= Variables ®g Breakpoints 52 &9 Expressions = O
XEBEPA|BER| e ~
@ Ones [line: 33] - main(5tring[])
@ ProjectBuler2 [line: 25] - main(5tring(])
2 RatPolyStackTest [line: 157] - testDupWithOneWal()
3’:?' RatPolyStackTest [line: 159] [conditional] - testDupWithOneVal()
[] .2 RatPolyStackTest [line: 162] - testDupWithOneVal()
[Hit count: @ Suspend thread () Suspend WM
[¥] Conditional @ Suspend when 'true’ () Suspend when value changes
’§< Choose a previously entered condition= P

¥ == B
4

Eclipse Debugging

Enabled/Disabled Breakpoints

Breakpoints can be temporarily
disabled by clicking the
checkbox next to the
breakpoint. This means it won’t
stop program execution until re-
enabled.

This is useful if you want to hold
off testing one thing, but don’t
want to completely forget about
that breakpoint.

()= Variables ®g Breakpoints 52 &9 Expressions =
RERANBEG| e

EEE
]

o

@ Ones [line: 33] - main(String[])

ProjectEuler26 [line: 25] - main(5tring[])

RatPolyStackTest [line: 157] - testDupWithOneVal()
RatPolyStackTest [line: 159] [conditional] - testDupWithOneVal()
RatPolyStackTest [line: 162] - testDupWithOneVal()

[Hit count:

(@ Suspend thread () Suspend VM

Conditional @ Suspend when 'true' () Suspend when value changes

’§< Choose a previously entered condition>

¥ == b
'l

L3

Eclipse Debugging

Hit count

Breakpoints can be set to occur
less-frequently by supplying a
hit count of n.

When this is specified, only each
n-th time that breakpoint is hit
will code execution stop.

()= Variables ®g Breakpoints 52 &9 Expressions = O
REPANBES| e ¥
@ Ones [line: 33] - main(5tring[])
@ ProjectBuler2 [line: 25] - main(5tring(])
42 RatPolyStackTest [line: 157] - testDupWithOneWal()
,,.?9 RatPolyStackTest [line: 159] [conditional] - testDupWithOneVal()
[] .2 RatPolyStackTest [line: 162] - testDupWithOneVal()
[Hit count: @ Suspend thread) Suspend WM
P P
[/| Conditional @ Suspend when 'true' () Suspend when value changes
’§< Choose a previously entered condition= P
¥ == B a
4 b

Eclipse Debugging

Conditional Breakpoints

Breakpoints can have
conditions. This means the
breakpoint will only be triggered
when a condition you supply is
true. This is very useful for
when your code only breaks on
some inputs!

Watch out though, it can make
your code debug very slowly,
especially if there’s an error in
your breakpoint.

)

()= Variables ®g Breakpoints 52 &9 Expressions = O
REFPAN|BES| 2| 7
@ Ones [line: 33] - main(5tring[])
@ ProjectBuler2 [line: 25] - main(5tring(])
42 RatPolyStackTest [line: 157] - testDupWithOneWal()
,,.?9 RatPolyStackTest [line: 159] [conditional] - testDupWithOneVal()
[] .2 RatPolyStackTest [line: 162] - testDupWithOneVal()
[T Hit count: @ Suspend thread) Suspend VM

Conditional @ Suspend when 'true' () Suspend when value changes

’EéChuase a previcusly entered condition>

¥ == b
'l

L3

Eclipse Debugging

Disable All Breakpoints

You can disable all breakpoints
temporarily. This is useful if
you’'ve identified a bug in the
middle of a run but want to let
the rest of the run finish
normally.

Don’t forget to re-enable
breakpoints when you want to
use them again.

()= Variables ®g Breakpoints 52 &9 Expressions =

X % & AN = 5| 2
@ Ones [line: 33] - main(5tring[])
@ ProjectBuler2 [line: 25] - main(5tring(])
42 RatPolyStackTest [line: 157] - testDupWithOneWal()
,,.?9 RatPolyStackTest [line: 159] [conditional] - testDupWithOneVal()
[] .2 RatPolyStackTest [line: 162] - testDupWithOneVal()

[Hit count: (@ Suspend thread () Suspend VM

Conditional @ Suspend when 'true' () Suspend when value changes

’§< Choose a previously entered condition>

¥ == b

4 bk

L3

Eclipse Debugging

Break on Java Exception

()= Variables ®g Breakpoints 52 &9 Expressions = O
: REPAR|BES| e 7
Eclipse can break whenever a ® Ones [line: 33] - main(String[])
Specific exception is th rown. @ ProjectEuler26 [line: 25] - main(String[])
. 42 RatPolyStackTest [line: 157] - testDupWithOneWal()
This can be useful to trace an 7] % RatPolyStackTest [line: 159] [conditional] - testDupWithOneVal()

[] .2 RatPolyStackTest [line: 162] - testDupWithOneVal()

exception that is being
”tra nslated” by ||bra ry Code [Hit count: (@ Suspend thread () Suspend VM

Conditional @ Suspend when 'true' () Suspend when value changes

’§< Choose a previously entered condition= P

¥ == B
4

Eclipse Debugging

. . [Window | Help

Expressions Window | Newwindow TAE0a A -
New Editor %5 Debug | 2w SVN Repository Exploring
Used to show the results of custom Hide Toolbar _ :

. . f kpoints &4 Expressions 53
expressions you provide, and can Open Perspective b)
change any time. L Show View ’ f Ant | -

Customize Perspective.., EQ Breakpoints Alt+Shift+Q. B
i Console Alt+Shift+Q, C
. Save Perspective As...
Not shown by default but highly S % Debug
recom mended. Close Perspective) Display _
1 Close All Perspectives @ ErrorLog Alt+Shift+Q. L
&1 Expressions

: LRt " B2 Outline Alt+Shift+Q, O

: Preferences «Zf,, Tazks
il B WEEA3Z7| (9= Variables Alt+5hift+Q, V

b 1 |
Other... Alt+Shift+ 3, Q r

[—] ="~ r

Eclipse Debugging

Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Resolves variables, allows method
calls, even arbitrary statements
112+2H

Beware method calls that mutate
program state — e.g. stkl.clear() or
in.nextLine() — these take effect
immediately

< capacitylncrement
< elementCount

_J 6= Variables ©g Breakpoints &9 Expressions 53 = O
HE XK T
Marne Value ~ [3, 2, 1, null, nul =
Y “this" (id=33)
U (id=57)
a 2V "stid polys” (id=61)

m

0
E

[

X!
F | ='!T'l:'II

< elementData
< modCount
"stkl.toString ()"
E hash

= hash32

Object[10] (id=73)
3 L
hwd, RatPolyStack(

0

0 - -

<

I

| 3 i mm 3

Eclipse Debugging

Expressions Window

These persist across projects, so
clear out old ones as necessary.

)= Variables ©g Breakpoints &9 Expressions 53 =
<5 B+ %%
Marne Value ~ [3, 2, 1, null5—mol
Y “this" (id=33)
2 Y g (id=57)
a 2V "stid polys” (id=61)
< capacitylncrement 0 =
< elementCount 3
o elementData Object[10] (id=73])
< modCount 3 A
4 Y stk toString ()" hwd.RatPolyStackd
E hash]
= hash32] -
< T | b « [Lm b

Eclipse Debugging

* Demo

