
Exam Review

CSE 331 – Section 10
12/6/12

Slides by Kellen Donohue with material from Mike Ernst

Course Logistics

• All homework’s done (except late days)

• HW8 returned

• HW7 being graded

• HW9 will be graded during finals week

• Final on Monday

• Review session Sunday, 3PM in our normal
classroom

Final Exam

• 8:30 AM

• Full final (vs. some previous quarters)

• Cumulative over the quarter

• All section and lecture material

• May include project-related questions

Reasoning about code

• Forward reasoning

• Backward reasoning
– Finding the weakest precondition

• If/else reasoning

• Loop development
– Loop invariant

– True before loop, re-established at end of each loop

• Practice: Do the problems from hw1 and hw2 again,
google practice interview questions, answer and prove

Specifications

• Stronger vs. weaker specs.

– How to prove

• Strong/weaker pre/post conditions

• One implementation satisfies another

– Effect on client/implementer

• Javadoc -- requires, effects, modifies, etc.

• Practice: Review old midterms and finals

Daikon invariant detection

• Tool for automatically generating
specifications

• Daikon uses a compiler front-end (not like a
GUI front-end) to add instrumentation calls to
your program
– At beginning and end of every method

– Says what the value of every variable is

• Running your program produces a program
trace

Daikon Datatrace
HelloWorld.ArrayHolder.updateArray(System.Int32[]_integers):::ENTER
this_invocation_nonce
2

this
4094363
1
this.baseArray
63208015

1
this.baseArray[..]
[]
1
this.expandedArray

41962596
1
this.expandedArray[..]
[]
1

this.GetType()
"HelloWorld.ArrayHolder"
1
integers
43527150
1
integers[..]
[-1 0 1]
1

HelloWorld.ArrayHolder.updateArray(System.Int32[]_integers):::EXIT66
this_invocation_nonce
2
this
4094363
1
this.baseArray
63208015
1
this.baseArray[..]
[4 5 6]
1
this.expandedArray
41962596
1
this.expandedArray[..]
[3 4 5 6 7]
1

Daikon Invariants

• Daikon then analyzes the data trace and guesses
invariants using machine learning
– this.a > abs(y) array a is sorted

– n.left.value < n.right.value

– p != null ⇒ p.content in myArray

– x = orig(x+1)

• Invariants can be encoded in the program with
asserts, javadoc, etc.

• False positives can be removed by adding new
tests

Abstract Data Types (ADT’s)

• Abstraction vs. implementation/representation

• Representation Invariant

• Abstraction function

• Representation exposure

• Practice: Think about implementing a sample
ADT, a PriorityQueue is a good example, write an
AF and RI. Change implementation details and
update the AF and RI.

Testing Theory

• Unit testing vs. other kinds
• Black box vs. white box
• Implementation vs. specification
• Revealing subdomains
• Boundary cases
• Coverage types

• Practice: Think about how you would test
projects that you didn’t already write tests for
(other CSE classes)

Testing Practice

• JUnit basics

• Test rules of thumb
– Test only one function at a time if possible

– Test only one data set per test

– Use at least one assert per test

– More in section slides

• Practice: Implement JUnit tests for projects that
you didn’t already write tests for (other CSE
classes)

Interfaces & Classes

• Specification, how to comment

• Classes & Types
– Coupling/Cohesion

• Including the right amount
– Avoid god classes

– Avoid writing a kitchen sink class

• Practice: Design the data model for a
smartphone contacts application

Exceptions and assertions

• Rationale behind exceptions

• Basic Uses

• Exception vs. assertions

• Checked vs. unchecked exceptions

• Special values vs. exceptions

Debugging strategies

• Setting up experiments

• Use with testing

• Regression testing

• Binary search

Identity & Equality

• Properties of equality

• Reference equality

• hashCode() and equals()

Subtypes & Subclasses

• True subtypes vs. Java subtypes

– Remember the Properties class that extends
Hashtable but isn’t a true subtype

• Composition/delegation vs. inheritance

– Remember InstrumentedHashSet problems with
inheritance

• Interfaces & abstract classes

Generics

• Use generic, not raw collections

• Remember generic data is erased at runtime

• Java subtyping is invariant subtyping

– This is more restrictive than we want, (e.g. can’t
call a method taking List<Object> with a
List<Integer>) so commonly use wildcards

Wildcards

• ? indicates a wild-card type parameter, one that can be any type
List<?> list = new List<?>(); // anything

• Difference between List<?> and List<Object>
– ? can become any particular type; Object is just one such type
– List<Object> is restrictive; wouldn't take a List<String>

• Wildcards can be bounded with extends of super

• Difference between List<Foo> and List<? extends Foo>
– The latter binds to a particular Foo subtype and allows ONLY that

• Ex: List<? extends Animal> might store only Giraffes but not
Zebras

– The former allows anything that is a subtype of Foo in the same list
• Ex: List<Animal> could store both Giraffes and Zebras

18

PECS: Producer Extends, Consumer Super

Where should you insert wildcards?
Should you use extends or super or neither?

– Use ? extends T when you get values from a
producer

– Use ? super T when you put values into a

consumer

– Use neither (just T, not ?)
if you do both

<T> void copy(

 List<? super T> dst,

 List<? extends T> src)

19

Legal operations on wildcard types

Object o;

Number n;

Integer i;

PositiveInteger p;

List<? extends Integer> lei;

First, which of these is legal?
lei = new ArrayList<Object>;

lei = new ArrayList<Number>;

lei = new ArrayList<Integer>;

lei = new ArrayList<PositiveInteger>;

lei = new ArrayList<NegativeInteger>;

Which of these is legal?
lei.add(o);

lei.add(n);

lei.add(i);

lei.add(p);

lei.add(null);

o = lei.get(0);

n = lei.get(0);

i = lei.get(0);

p = lei.get(0);

Legal operations on wildcard types

Object o;

Number n;

Integer i;

PositiveInteger p;

List<? super Integer> lsi;

First, which of these is legal?
lsi = new ArrayList<Object>;

lsi = new ArrayList<Number>;

lsi = new ArrayList<Integer>;

lsi = new ArrayList<PositiveInteger>;

lsi = new ArrayList<NegativeInteger>;

Which of these is legal?
lsi.add(o);

lsi.add(n);

lsi.add(i);

lsi.add(p);

lsi.add(null);

o = lsi.get(0);

n = lsi.get(0);

i = lsi.get(0);

p = lsi.get(0);

Events, listeners, and callbacks

• Register to be called back when an event
occurs

• Useful for inverting dependency

• Review the Observer pattern

MVC

• Model covers everything related to loading, managing
the data, performing computations, etc.

• View shows the model to the user in one of many ways
(may use Observer pattern to be notified of updates)

• Controllers are how the user interacts with the data
and customizes the view

• Practice: Design views and controllers for earlier
Contacts app

Design Patterns

• Need & purpose
• Creational Patterns

– Singleton
– Interning
– Factory

• Structural Patterns
– Adaptor
– Proxy

• Behavioral Patterns
– Composite
– Visitor

• Know what patterns are useful for

Swing GUI

• Usability

• Swing vs. AWT

• JFrame & JPanel for layout

• Using paintComponent() for drawing

• Interaction with Events, Listeners

• Practice: Implement earlier Contacts app

System integration

• Architecture
• Tools

– Source control
– Bug tracking

• Schedule
– Potential problems
– How to deal with slippage

• Implementation / test order
– Top-down or bottom-up
– Test drivers or stubs
– Pros and cons of each

Final Topics

• Reasoning

• Specifications

• ADTs

• Testing

• Class design

• Exceptions & assertions

• Debugging

• Identity & equality

• Generics

• Events, callbacks

• MVC

• Design patterns

• Swing GUIs

• System Integration

Course Evals

