Exam Review

CSE 331 — Section 10
12/6/12

Slides by Kellen Donohue with material from Mike Ernst

Course Logistics

All homework’s done (except late days)
HWS8 returned
HW7 being graded

HW9 will be graded during finals week

Final on Monday

Review session Sunday, 3PM in our normal
classroom

Final Exam

8:30 AM

Full final (vs. some previous quarters)
Cumulative over the quarter

All section and lecture material

May include project-related questions

Reasoning about code

Forward reasoning

Backward reasoning

— Finding the weakest precondition
If /else reasoning

Loop development
— Loop invariant
— True before loop, re-established at end of each loop

Practice: Do the problems from hw1l and hw2 again,
google practice interview questions, answer and prove

Specifications

» Stronger vs. weaker specs.

— How to prove

» Strong/weaker pre/post conditions
* One implementation satisfies another

— Effect on client/implementer

* Javadoc -- requires, effects, modifies, etc.

 Practice: Review old midterms and finals

Daikon invariant detection

* Tool for automatically generating
specifications

e Daikon uses a compiler front-end (not like a
GUI front-end) to add instrumentation calls to
your program
— At beginning and end of every method
— Says what the value of every variable is

* Running your program produces a program
trace

Daikon Datatrace

HelloWorld.ArrayHolder.updateArray (System.Int32[]_integers):::ENTER
this_invocation_nonce

2

this

4094363

1

this.baseArray

63208015

1

this.baseArray[..]

1

1

this.expandedArray
41962596

1
this.expandedArrayl..]
0

1

this.GetType()
"HelloWorld.ArrayHolder"
1

integers

43527150

1

integers|..]

[101]

1

HelloWorld.ArrayHolder.updateArray (System.Int32[]\ _integers)::EXIT66
this_invocation_nonce
2

this

4094363

1

this.baseArray
63208015

1

this.baseArray[..]
[456]

1

this.expandedArray
41962596

1
this.expandedArray]..]
34567

1

Daikon Invariants

* Daikon then analyzes the data trace and guesses
invariants using machine learning
— this.a > abs(y) array a is sorted
— n.left.value < n.right.value
— p !=null = p.content in myArray
— X = orig(x+1)

* |nvariants can be encoded in the program with
asserts, javadoc, etc.

* False positives can be removed by adding new
tests

Abstract Data Types (ADT's)

Abstraction vs. implementation/representation
Representation Invariant

Abstraction function

Representation exposure

Practice: Think about implementing a sample
ADT, a PriorityQueue is a good example, write an
AF and RI. Change implementation details and
update the AF and RI.

Testing Theory

Unit testing vs. other kinds

Black box vs. white box
Implementation vs. specification
Revealing subdomains
Boundary cases

Coverage types

Practice: Think about how you would test
projects that you didn’t already write tests for
(other CSE classes)

Testing Practice

e JUnit basics

e Test rules of thumb
— Test only one function at a time if possible
— Test only one data set per test
— Use at least one assert per test
— More in section slides

* Practice: Implement JUnit tests for projects that
you didn’t already write tests for (other CSE
classes)

Interfaces & Classes

Specification, how to comment
Classes & Types
— Coupling/Cohesion

Including the right amount
— Avoid god classes
— Avoid writing a kitchen sink class

Practice: Desigh the data model for a
smartphone contacts application

Exceptions and assertions

Rationale behind exceptions

Basic Uses

Exception vs. assertions

Checked vs. unchecked exceptions
Special values vs. exceptions

Debugging strategies

Setting up experiments
Use with testing
Regression testing
Binary search

ldentity & Equality

Properties of equality
Reference equality

nashCode() and equals()

Subtypes & Subclasses

* True subtypes vs. Java subtypes

— Remember the Properties class that extends
Hashtable but isn’t a true subtype

* Composition/delegation vs. inheritance

— Remember InstrumentedHashSet problems with
inheritance

* Interfaces & abstract classes

Generics

Use generic, not raw collections
Remember generic data is erased at runtime

Java subtypingis invariant subtyping

— This is more restrictive than we want, (e.g. can’t
call a method taking List<Object> with a
List<Integer>) so commonly use wildcards

Wildcards

? indicates a wild-card type parameter, one that can be any type
List<?> list = new List<?>(); // anything

Difference between List<?> and List<Object>
— ? can become any particular type; Object is just one such type
— List<Object> is restrictive; wouldn't take a List<String>

Wildcards can be bounded with extends of super

Difference between List<Foo> and List<? extends Foo>

— The latter binds to a particular Foo subtype and allows ONLY that

* Ex:List<? extends Animal> mightstoreonly Giraffes butnot
Zebras

— The former allows anything that is a subtype of Foo in the same list
* Ex: List<Animal> could store both Giraffes and Zebras

PECS: Producer Extends, Consumer Super

Where should you insert wildcards?
Should you use extends or super or neither?

— Use ? extends T when you get values from a
producer

— Use ? super T when you put values into a
consumer

— Use neither (just T, not ?)
if you do both

<T> void copy (
List<? super T> dst,
List<? extends T> src)

Legal operations on wildcard types

Object o; Which of these is legal?
Number n; Zdei-addlic)—+
Integer 1i; Jlei.add(n)
PositiveInteger p; dei . add i)+
—Teiadd{p)-
List<? extends Integer> lei; lei.add (null) ;

o = lei.get(0);
n = lei.get(0) ;
First, which of these is legal? i = lei.get (0);
tei—— 2 Fist<Obiect>- = tei-qet{o)
loi — 7 I3 & t<Numl ;
lei = new Arraylist<Integer>;
lei new ArrayList<Positivelnteger>;
lei = new Arraylist<NegativelInteger>;

Legal operations on wildcard types

Object o; Which of these is legal?
Number n; A si-add{c)+
Integer 1i; —Istiadd{m)
PositiveInteger p; lsi.add (i) ;

1si.add(p)
List<? super Integer> lsi; 1si.add(null);

o = lsi.get(0);

= Isi.get(0);
First, which of these is legal? i =Isi.get(0);

1si = new ArrayList<Object>; “p—="1si-get{0)-
1si = new ArraylList<Number>;

1si = new Arraylist<Integer>;
T 2 s e POs i ve T :
1si = 2 ListeN tiveInd ;

Events, listeners, and callbacks

* Register to be called back when an event
occurs

e Useful for inverting dependency
* Review the Observer pattern

MVC

Model covers everything related to loading, managing
the data, performing computations, etc.

View shows the model to the user in one of many ways
(may use Observer pattern to be notified of updates)

Controllers are how the user interacts with the data
and customizes the view

Practice: Design views and controllers for earlier
Contacts app

Design Patterns

Need & purpose
Creational Patterns
— Singleton

— Interning

— Factory
Structural Patterns
— Adaptor

— Proxy

Behavioral Patterns
— Composite

— Visitor

Know what patterns are useful for

Swing GUI

Usability
Swingvs. AWT

JFrame & JPanel for layout

Using paintComponent() for drawing

nteraction with Events, Listeners

Practice: Implement earlier Contacts app

System integration

Architecture

Tools
— Source control
— Bug tracking
Schedule
— Potential problems
— How to deal with slippage
Implementation / test order
— Top-down or bottom-up
— Test drivers or stubs
— Pros and cons of each

Final Topics

Reasoning
Specifications

ADTs

Testing

Class design

Exceptions & assertions
Debugging

ldentity & equality

Generics

Events, callbacks
MVC

Design patterns
Swing GUIs
System Integration

Course Evals

