
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2012

Wrapup

1

10 weeks ago…

•  We have 10 weeks to move to a level well above
novice programmer:
–  Principled, systematic programming: What does it

mean to get it right? How do we know when we
get there? What are best practices for doing this?

–  Effective use of languages and tools: Java, IDEs,
debuggers, JUnit, JavaDoc, svn

•  The principles are ultimately more important
than the details

–  Larger programs

2

A huge thanks to the folks who made it work

3

CSE 331 goals

Enable you to

•  manage complexity

•  ensure correctness

•  write modest programs
(modest by industry standards, that is….)

4

CSE 331 topics

Manage complexity:
–  Abstraction
–  Specification
–  Modularity
–  Program design & organization

•  OO design, dependences, design patterns, tradeoffs
–  Subtyping
–  Documentation

Ensure correctness:
–  Reasoning
–  Testing
–  Debugging

Write programs:
–  Practice and feedback
–  Introduction to: tools (version control, debuggers), understanding

libraries, software process, requirements, usability

5

Divide and conquer:
Modularity, abstraction, specs

No one person can understand all of a realistic
system

Modularity permits focusing on just one part
Abstraction enables ignoring detail
Specifications (and documentation) formally

describe behavior
Reasoning relies on all three to understand/fix

errors
Or to avoid them in the first place

6

Getting it right ahead of time

Design: predicting implications
Example: understanding interconnections, module

dependency diagrams

Understanding the strengths and weaknesses

If you don’t understand a design, you can’t use it

Documentation matters!

7

Documentation

Everyone wants good documentation when using a
system
Not everyone likes writing documentation

Documentation is often the most important part of a
user interface

What’s obvious to you may not be obvious to others

8

An undocumented software system has zero commercial value.
 John Chapin
 CTO of Vanu, Inc.

Testing

Helps you understand what you didn’t understand while
designing and implementing

A good test suite exercises each behavior
Theory: revealing subdomains, proves correctness
Practice: code coverage, value coverage, boundary

values
Practice: testing reveals errors, never proves

correctness
A good test suite makes a developer fearless during

maintenance

9

Maintenance

Maintenance accounts for most of the effort spent on a
successful software system

–  often 90% or more
A good design enables the system to adapt to new
requirements while maintaining quality

–  Think about the long term, but don’t prematurely
optimize

Good documentation enables others to understand the
design
A good test suite greatly reduces the risks of changes

–  And is a big part of the documentation/history of
the project

10

Correctness
In the end, only correctness matters

Near-correctness is often easy!
Getting it right can be difficult

How to determine the goal?
Requirements
Design documents for the customer

How to increase the likelihood of achieving the goal?
Unlikely without use of modularity, abstraction, specification,

documentation, design, …
Doing the job right is usually justified by return on investment

(ROI)
How to verify that you achieved it?

Testing
Reasoning (formal or informal) helps!
Use proofs and tools as appropriate

11

Working in a team

No one person can understand all of a realistic system
Break the system into pieces
Use modularity, abstraction, specification, documentation

Different points of view bring value
Diversity is not just a “feel good” issue

Work effectively with others
Sometimes challenging, usually worth it

Manage your resources effectively
Time, people
Engineering is about tradeoffs

Both technical and management contributions are critical

12

How CSE 331 fits together

13

Lectures: ideas
Specifications
Testing
Subtyping
Equality & identity
Polymorphism
Design patterns
Reasoning, debugging
Events
Usability, teamwork

⇒ Assignments: get practice
⇒ Design classes
⇒ Write tests
⇒ Write subclasses
⇒ Override equals, use collections
⇒ Write generic class
⇒ Larger designs
⇒ Correctness, testing
⇒ GUIs
⇒ (For fun and for future use)

What you have learned in CSE 331

Compare your skills today to 3 months ago
Theory: abstraction, specification, design
Practice: implementation, testing
Theory & practice: correctness
Bottom line: Much of what we’ve done would be

easy for you today
This is a measure of how much you have learned

There is no such thing as a “born” programmer!
Your next project can be more ambitious

Genius is 1% inspiration and 99% perspiration.
 Thomas A. Edison

What you will learn later

Your next project can be much more ambitious
Know your limits

Be humble (reality helps you with this)
You will continue to learn

Building interesting systems is never easy
Like any worthwhile endeavor

Practice is a good teacher
Requires thoughtful introspection
Don’t learn only by trial and error!

15

What comes next?

Classes
–  CSE 403 Software Engineering

•  Focuses more on requirements, sofware lifecycle, teamwork
–  Capstone projects
–  Any class that requires software design and implementation

Research
–  In software engineering & programming systems
–  In any topic that involves software

Having an impact on the world
–  Jobs (and job interviews)
–  Larger programming projects

The purpose of computing is insight, not numbers.
 Richard W. Hamming
 Numerical Methods for Scientists and Engineers

Go forth and conquer

System building is fun!

It’s even more fun when you build it successfully

Pay attention to what matters

Use the techniques and tools of CSE 331 effectively

17

